This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166343 #5 Mar 11 2022 20:47:09 %S A166343 1,1,1,1,12,1,1,27,27,1,1,58,162,58,1,1,121,718,718,121,1,1,248,2759, %T A166343 5744,2759,248,1,1,503,9765,36771,36771,9765,503,1,1,1014,32816, %U A166343 205674,367710,205674,32816,1014,1,1,2037,106560,1052408,3072594,3072594,1052408,106560,2037,1 %N A166343 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows. %D A166343 Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91 %H A166343 G. C. Greubel, <a href="/A166343/b166343.txt">Rows n = 1..50 of the triangle, flattened</a> %F A166343 T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4. %F A166343 From _G. C. Greubel_, Mar 11 2022: (Start) %F A166343 T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A063521(k), b(n, 0) = 1, and b(1, k) = 1. %F A166343 T(n, n-k) = T(n, k). (End) %e A166343 Triangle begins as: %e A166343 1; %e A166343 1, 1; %e A166343 1, 12, 1; %e A166343 1, 27, 27, 1; %e A166343 1, 58, 162, 58, 1; %e A166343 1, 121, 718, 718, 121, 1; %e A166343 1, 248, 2759, 5744, 2759, 248, 1; %e A166343 1, 503, 9765, 36771, 36771, 9765, 503, 1; %e A166343 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1; %e A166343 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1; %t A166343 (* First program *) %t A166343 p[x_, 1]:= x/(1-x)^2; %t A166343 p[x_, 2]:= x*(1+x)/(1-x)^3; %t A166343 p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4; %t A166343 p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x] %t A166343 Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten %t A166343 (* Second program *) %t A166343 b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]]; %t A166343 t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}]; %t A166343 T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]]; %t A166343 Table[T[n,k,4], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 11 2022 *) %o A166343 (Sage) %o A166343 def b(n,k,m): %o A166343 if (n<2): return 1 %o A166343 elif (k==0): return 0 %o A166343 else: return k^(n-1)*((m+3)*k^2 - m)/3 %o A166343 @CachedFunction %o A166343 def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) ) %o A166343 def A166343(n,k): return 1 if (k==1) else t(n-1,k,4) - t(n-1,k-1,4) %o A166343 flatten([[A166343(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 11 2022 %Y A166343 Cf. A166340, A166341, A166344, A166345, A166346, A166349. %Y A166343 Cf. A063521, A123125. %K A166343 nonn,tabl %O A166343 1,5 %A A166343 _Roger L. Bagula_, Oct 12 2009 %E A166343 Edited by _G. C. Greubel_, Mar 11 2022