cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166343 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows.

This page as a plain text file.
%I A166343 #5 Mar 11 2022 20:47:09
%S A166343 1,1,1,1,12,1,1,27,27,1,1,58,162,58,1,1,121,718,718,121,1,1,248,2759,
%T A166343 5744,2759,248,1,1,503,9765,36771,36771,9765,503,1,1,1014,32816,
%U A166343 205674,367710,205674,32816,1014,1,1,2037,106560,1052408,3072594,3072594,1052408,106560,2037,1
%N A166343 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows.
%D A166343 Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
%H A166343 G. C. Greubel, <a href="/A166343/b166343.txt">Rows n = 1..50 of the triangle, flattened</a>
%F A166343 T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4.
%F A166343 From _G. C. Greubel_, Mar 11 2022: (Start)
%F A166343 T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A063521(k), b(n, 0) = 1, and b(1, k) = 1.
%F A166343 T(n, n-k) = T(n, k). (End)
%e A166343 Triangle begins as:
%e A166343   1;
%e A166343   1,    1;
%e A166343   1,   12,      1;
%e A166343   1,   27,     27,       1;
%e A166343   1,   58,    162,      58,       1;
%e A166343   1,  121,    718,     718,     121,       1;
%e A166343   1,  248,   2759,    5744,    2759,     248,       1;
%e A166343   1,  503,   9765,   36771,   36771,    9765,     503,      1;
%e A166343   1, 1014,  32816,  205674,  367710,  205674,   32816,   1014,    1;
%e A166343   1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1;
%t A166343 (* First program *)
%t A166343 p[x_, 1]:= x/(1-x)^2;
%t A166343 p[x_, 2]:= x*(1+x)/(1-x)^3;
%t A166343 p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4;
%t A166343 p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
%t A166343 Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
%t A166343 (* Second program *)
%t A166343 b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
%t A166343 t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
%t A166343 T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
%t A166343 Table[T[n,k,4], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 11 2022 *)
%o A166343 (Sage)
%o A166343 def b(n,k,m):
%o A166343     if (n<2): return 1
%o A166343     elif (k==0): return 0
%o A166343     else: return k^(n-1)*((m+3)*k^2 - m)/3
%o A166343 @CachedFunction
%o A166343 def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
%o A166343 def A166343(n,k): return 1 if (k==1) else t(n-1,k,4) - t(n-1,k-1,4)
%o A166343 flatten([[A166343(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 11 2022
%Y A166343 Cf. A166340, A166341, A166344, A166345, A166346, A166349.
%Y A166343 Cf. A063521, A123125.
%K A166343 nonn,tabl
%O A166343 1,5
%A A166343 _Roger L. Bagula_, Oct 12 2009
%E A166343 Edited by _G. C. Greubel_, Mar 11 2022