This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166344 #5 Mar 11 2022 21:25:18 %S A166344 1,1,1,1,6,1,1,15,15,1,1,34,90,34,1,1,73,406,406,73,1,1,152,1583,3248, %T A166344 1583,152,1,1,311,5661,20907,20907,5661,311,1,1,630,19160,117594, %U A166344 209070,117594,19160,630,1,1,1269,62520,604496,1750914,1750914,604496,62520,1269,1 %N A166344 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+6*x+x^2)/(1-x)^4, read by rows. %D A166344 Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91 %H A166344 G. C. Greubel, <a href="/A166344/b166344.txt">Rows n = 1..50 of the triangle, flattened</a> %F A166344 T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+6*x+x^2)/(1-x)^4. %F A166344 From _G. C. Greubel_, Mar 11 2022: (Start) %F A166344 T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A000447(k), b(n, 0) = 1, and b(1, k) = 1. %F A166344 T(n, n-k) = T(n, k). (End) %e A166344 Triangle begins as: %e A166344 1; %e A166344 1, 1; %e A166344 1, 6, 1; %e A166344 1, 15, 15, 1; %e A166344 1, 34, 90, 34, 1; %e A166344 1, 73, 406, 406, 73, 1; %e A166344 1, 152, 1583, 3248, 1583, 152, 1; %e A166344 1, 311, 5661, 20907, 20907, 5661, 311, 1; %e A166344 1, 630, 19160, 117594, 209070, 117594, 19160, 630, 1; %e A166344 1, 1269, 62520, 604496, 1750914, 1750914, 604496, 62520, 1269, 1; %t A166344 (* First program *) %t A166344 p[x_, 1]:= x/(1-x)^2; %t A166344 p[x_, 2]:= x*(1+x)/(1-x)^3; %t A166344 p[x_, 3]:= x*(1+6*x+x^2)/(1-x)^4; %t A166344 p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x] %t A166344 Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten %t A166344 (* Second program *) %t A166344 b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]]; %t A166344 t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}]; %t A166344 T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]]; %t A166344 Table[T[n,k,1], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 11 2022 *) %o A166344 (Sage) %o A166344 def b(n,k,m): %o A166344 if (n<2): return 1 %o A166344 elif (k==0): return 0 %o A166344 else: return k^(n-1)*((m+3)*k^2 - m)/3 %o A166344 @CachedFunction %o A166344 def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) ) %o A166344 def A166344(n,k): return 1 if (k==1) else t(n-1,k,1) - t(n-1,k-1,1) %o A166344 flatten([[A166344(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 11 2022 %Y A166344 Cf. A166340, A166341, A166343, A166345, A166346, A166349. %Y A166344 Cf. A000447, A123125. %K A166344 nonn,tabl %O A166344 1,5 %A A166344 _Roger L. Bagula_, Oct 12 2009 %E A166344 Edited by _G. C. Greubel_, Mar 11 2022