A166383 Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. dsf(1583236420) =1682731 and dsf(1682731) = 18470991,...,dsf(388290999) = 1583236420,.. in this way this 97 numbers make a loop for the function dsf. In fact this is the longest loop for dsf function in the set of all nonnegative integers.
1583236420, 16827317, 18470991, 792441996, 1163132183, 16823961, 404291050, 387424134, 17601586, 17697199, 1163955211, 387473430, 18424896, 421022094, 387421016, 17647705, 2520668, 16873662, 17740759, 389894501, 808398820
Offset: 1
Examples
This is an iterative process that starts with 1583236420.
Links
- Ryohei Miyadera, Curious Properties of an Iterative Process, Mathsource, Wolfram Library Archive.
Programs
-
Mathematica
dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf,1583236420,194]
Formula
Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. By applying the function dsf to 1583236420 repeatedly we can get a loop of the length of 97.
Comments