This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166425 #16 Jul 25 2024 20:59:38 %S A166425 1,31,930,27900,837000,25110000,753300000,22599000000,677970000000, %T A166425 20339100000000,610173000000000,18305189999999535,549155699999972100, %U A166425 16474670999998744965,494240129999949807900,14827203899998118005500 %N A166425 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I. %C A166425 The initial terms coincide with those of A170750, although the two sequences are eventually different. %C A166425 Computed with MAGMA using commands similar to those used to compute A154638. %H A166425 G. C. Greubel, <a href="/A166425/b166425.txt">Table of n, a(n) for n = 0..500</a> %H A166425 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (29,29,29,29,29,29,29,29,29,29,-435). %F A166425 G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1). %F A166425 From _G. C. Greubel_, Jul 25 2024: (Start) %F A166425 a(n) = 29*Sum_{j=1..10} a(n-j) - 435*a(n-11). %F A166425 G.f.: (1+x)*(1-x^11)/(1 - 30*x + 464*x^11 - 435*x^12). (End) %t A166425 With[{p=435, q=29}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* _G. C. Greubel_, May 13 2016; Jul 25 2024 *) %t A166425 coxG[{11,435,-29}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Dec 26 2021 *) %o A166425 (Magma) %o A166425 R<x>:=PowerSeriesRing(Integers(), 30); %o A166425 Coefficients(R!( (1+x)*(1-x^11)/(1-30*x+464*x^11-435*x^12) )); // _G. C. Greubel_, Jul 25 2024 %o A166425 (SageMath) %o A166425 def A166425_list(prec): %o A166425 P.<x> = PowerSeriesRing(ZZ, prec) %o A166425 return P( (1+x)*(1-x^11)/(1-30*x+464*x^11-435*x^12) ).list() %o A166425 A166425_list(30) # _G. C. Greubel_, Jul 25 2024 %Y A166425 Cf. A154638, A169452, A170750. %K A166425 nonn %O A166425 0,2 %A A166425 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009