cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166471 a(n) = 2^L(n+1)*3^L(n), where L(n) is the n-th Lucas number (A000032(n)).

This page as a plain text file.
%I A166471 #11 Jul 30 2024 03:07:40
%S A166471 18,24,432,10368,4478976,46438023168,207994791256915968,
%T A166471 9658866935211987562213146624,
%U A166471 2008994011967745042140303999261186371230892032
%N A166471 a(n) = 2^L(n+1)*3^L(n), where L(n) is the n-th Lucas number (A000032(n)).
%H A166471 G. C. Greubel, <a href="/A166471/b166471.txt">Table of n, a(n) for n = 0..14</a>
%F A166471 a(n) = a(n-1)*a(n-2), for n > 1, with a(0) = 18, a(1) = 24.
%F A166471 For m>1, n>0, A166469(A002110(m)*(a(n)^k)/12) = k*Lucas(m+n).
%F A166471 A166469(a(n)) = Lucas(n+2) + 1 = A001612(n+2).
%t A166471 Table[2^LucasL[n+1]*3^LucasL[n], {n,0,10}] (* _G. C. Greubel_, May 15 2016 *)
%o A166471 (Magma) [2^Lucas(n+1)*3^Lucas(n): n in [0..10]]; // _G. C. Greubel_, Jul 30 2024
%o A166471 (SageMath)
%o A166471 def l(n): return lucas_number2(n,1,-1);
%o A166471 [2^l(n+1)*3^l(n) for n in range(11)] # _G. C. Greubel_, Jul 30 2024
%Y A166471 Cf. A000032, A001612, A002110, A166469, A166470, A166472, A166473.
%Y A166471 All terms but the first belong to A025487.
%Y A166471 Subsequence of A003586.
%K A166471 nonn
%O A166471 0,1
%A A166471 _Matthew Vandermast_, Nov 05 2009, Nov 07 2009