This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166483 #18 Mar 25 2024 21:14:07 %S A166483 1,8,84,912,13344,210240,4536000,101969280,2619086400,69184886400, %T A166483 2314236355200,79546238956800,2824874214624000,108310887381312000, %U A166483 4266362489957568000,197608471322790528000,9780059370744254592000,502210378611975825792000,27829868062695415516800000,1595350685432248426281600000 %N A166483 Number of integers in [1..A112141(n)] that are multiples of the first n semiprimes, where A112141(n) is the product of the first n semiprimes. %C A166483 Previous name: Numerator of sequence of ratios of semiprimes and multiples thereof in intervals of length 4*6, 4*6*9, 4*6*9*10, ... [A112141] to the length of the interval. See example below. The first few ratios are 1/4, 8/24, 84/216, 912/2160, ... %C A166483 Conjecture: sequences for 2-ads, 3-ads (composites of 3 primes), 4-ads, etc., converge to 1/2, 1/4, 1/8, ..., respectively. %C A166483 The first few analogous ratios for 3-ads are 1/8, 16/96, 336/1728, 7296/34560, ... %e A166483 For n=2, the product of first two semiprimes is 4*6 = 24, and there are 8 multiples of the semiprimes 4,6 in the interval [1..24] including those two semiprimes, with repetitions (such as 4*3, 2*6) counted only once. So a(2) = 8. %p A166483 f:= proc(n) %p A166483 local N, V, T, S; %p A166483 N:= convert(SP[1..n],`*`); %p A166483 T:= 0: %p A166483 for S in combinat:-powerset(convert(SP[1..n],set)) minus {{}} do %p A166483 if nops(S)::odd then T:= T + N/ilcm(op(S)) else T:= T - N/ilcm(op(S)) fi %p A166483 od; %p A166483 T %p A166483 end proc: %p A166483 map(f, [$1..20]); # _Robert Israel_, Mar 24 2024 %o A166483 (PARI) ismul(x, v) = for (k=1, #v, if ((x % v[k]) == 0, return(1));); %o A166483 vsp(n) = my(v=vector(n), i, k=3); while(i<n, if(bigomega(k++)==2, v[i++]=k)); v; %o A166483 a(n) = my(v = vsp(n)); sum(k=1, vecprod(v), ismul(k, v)); \\ _Michel Marcus_, Aug 16 2022 %Y A166483 Cf. A112141 (product of the first n semiprimes). %K A166483 nonn %O A166483 1,2 %A A166483 _Daniel Tisdale_, Oct 14 2009 %E A166483 a(2) and a(6) corrected, and new name from _Michel Marcus_, Aug 15 2022 %E A166483 More terms from _Robert Israel_, Mar 24 2024