This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166495 #15 Aug 03 2024 01:51:02 %S A166495 1,5,20,80,320,1280,5120,20480,81920,327680,1310720,5242880,20971510, %T A166495 83886000,335543850,1342174800,5368696800,21474777600,85899072000, %U A166495 343596134400,1374383923200,5497533235200,21990123110400,87960453120000 %N A166495 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I. %C A166495 The initial terms coincide with those of A003947, although the two sequences are eventually different. %C A166495 Computed with MAGMA using commands similar to those used to compute A154638. %H A166495 G. C. Greubel, <a href="/A166495/b166495.txt">Table of n, a(n) for n = 0..500</a> %H A166495 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (3,3,3,3,3,3,3,3,3,3,3,-6). %F A166495 G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1). %F A166495 From _G. C. Greubel_, Aug 02 2024: (Start) %F A166495 a(n) = 3*Sum_{j=1..11} a(n-j) - 6*a(n-12). %F A166495 G.f.: (1+x)*(1-x^12)/(1 - 4*x + 9*x^12 - 6*x^13). (End) %t A166495 CoefficientList[Series[(1+t)*(1-t^12)/(1-4*t+9*t^12-6*t^13), {t, 0, 50}], t] (* _G. C. Greubel_, May 15 2016; Aug 02 2024 *) %t A166495 coxG[{12,6,-3,30}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Feb 19 2018 *) %o A166495 (Magma) %o A166495 R<x>:=PowerSeriesRing(Integers(), 30); %o A166495 f:= func< p,q,x | (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13) >; %o A166495 Coefficients(R!( f(6,3,x) )); // _G. C. Greubel_, Aug 02 2024 %o A166495 (SageMath) %o A166495 def f(p,q,x): return (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13) %o A166495 def A166495_list(prec): %o A166495 P.<x> = PowerSeriesRing(ZZ, prec) %o A166495 return P( f(6,3,x) ).list() %o A166495 A166495_list(30) # _G. C. Greubel_, Aug 02 2024 %Y A166495 Cf. A003947, A154638, A169452. %K A166495 nonn %O A166495 0,2 %A A166495 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009