cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166512 2-comma numbers: n occurs in the sequence S[k+1] = S[k] + 10*last_digit(S[k-1]) + first_digit(S[k]) for two different splittings n=concat(S[0],S[1]).

Original entry on oeis.org

1023, 1044, 1521, 1657, 1789, 1984, 2191, 2263, 2451, 2466, 2523, 2676, 2783, 2824, 3066, 3268, 3589, 3602, 3631, 4051, 4113, 4149, 4159, 4213, 4315, 4611, 4685, 4781, 4969, 5133, 5526, 6053, 6165, 6246, 6445, 6650, 6712, 6893, 7350, 7668, 8011, 8144
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Oct 28 2009

Keywords

Comments

A comma number n as defined in A166511 is the concatenation of numbers a,b (no leading zeros allowed) which occurs ("again") in the sequence S = S(a,b) defined by S[0]=a, S[1]=b, S[k+1] = S[k] + 10*last_digit(S[k-1]) + first_digit(S[n]).
Here we list the subsequence of numbers that can be split up in 2 different ways, n=concat(a,b)=concat(c,d), such that S(a,b) and S(c,d) both contain n.
Since the 4-digit terms remind of year numbers, the terminology of bicommatile (in analogy with bissextile) years has been introduced (as a joke).

Examples

			None of the 3-digit terms in A166511 can be split up in 2 ways such that S(a,bc) and S(ab,c) both contain n=abc (concatenation, not product).
Therefore the smallest term in this sequence is a(1)=1023, which occurs in the sequences S(102,3) and S(10,23).
		

Crossrefs

Programs

  • PARI
    {for(n=1,1e4,/*is_A166512(n)=*/ my(c=2); for(d=1,#Str(n)-1, my( a=n\10^d, b=n%10^d ); b<10^(d-1) & (d>1 || a%10==0) & next; while(n > b=10*(a%10)+b\10^(#Str(b)-1)+a=b,); b==n & c--==0 & /*return(1)*/ !print1(n", ") & break))}