cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166513 3-comma numbers: n occurs in the sequence S[k+1]=S[k]+10*last_digit(S[k-1])+first_digit(S[k]) for three different splittings n=concat(S[0],S[1]).

Original entry on oeis.org

2676, 6246, 8349, 9427, 10587, 11558, 11756, 11811, 12427, 12788, 13090, 13110, 14328, 15031, 15187, 15493, 15637, 16867, 18322, 18768, 19918, 20699, 21138, 21422, 21698, 22824, 23108, 23242, 23868, 24456, 24854, 25342, 25478, 26583
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Oct 29 2009

Keywords

Comments

This subsequence of A166512 consists of the numbers that can be split up in (at least) three different ways, n=concat(a,b)=concat(c,d)=concat(e,f), such that the sequences S(a,b), S(c,d) and S(e,f) all contain n.
(Here S(a,b) is the sequence defined by S[0]=a, S[1]=b, S[k+1]=S[k]+10*last_digit(S[k-1])+first_digit(S[k]).) See A166511 and A166512 for more information.

Examples

			The 4-digit terms 2676, 6246, 8349, 9427 occurring in A166512, can be split up in any of the 3 possible ways such that S(a,bcd), S(ab,cd), and S(abc,d) all contain abcd (concatenation, not product). Therefore they are in this sequence, and they are even hypercomma (or "phoenix") numbers (A166508).
		

Crossrefs

Programs

  • PARI
    {for(n=1e4,1e5,/*is_A166513(n)=*/ my(c=3); for(d=1,#Str(n)-1, d+c>#Str(n) & break; my( a=n\10^d, b=n%10^d ); b<10^(d-1) & (d>1 | a%10==0) & next; while(n > b=10*(a%10)+b\10^(#Str(b)-1)+a=b,); b==n & c--==0 & /*return(1)*/ !print1(n", ") & break))}