This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166533 #6 May 13 2023 23:49:57 %S A166533 13,15,18,29,33,38,39,43,45,48,55,59,63,68,73,83,91,95,98,103,108,111, %T A166533 117,125,131,137,148,149,161,163,171,173,175,177,179,217,233,235,237, %U A166533 241,258,259,275,278,289,293,295,297,321,337,339,357,377,378,388,391 %N A166533 Numbers whose cube is a concatenation of exactly three primes (leading zeros allowed). %C A166533 The three primes are not necessarily all distinct. All even terms k are == 8 (mod 10) (and hence k^3 == 2 (mod 10)). %e A166533 13^3 = 2197 => { 2, 19, 7}; %e A166533 15^3 = 3375 => { 3, 37, 5}; %e A166533 18^3 = 5832 => { 5, 83, 2}; %e A166533 43^3 = 79507 => {79, 5, 07} (first case with leading zero); %e A166533 48^3 = 110592 => {11, 059, 2} (next case with leading zero). %t A166533 s={};Do[id=IntegerDigits[n^3];Le=Length@id; Do[t=FromDigits/@{Take[id,k],Take[id,{k+1,m}],Take[id,m-Le]}; If[PrimeQ[t]=={True,True,True},AppendTo[s,n];Goto[ne]],{k,Le-2},{m,k+1,Le-1}];Label[ne],{n,5,800}];s %Y A166533 Cf. A166534 (version with leading zeros not allowed), A038840 Cubes that are concatenations of primes. %K A166533 base,nonn %O A166533 1,1 %A A166533 _Zak Seidov_, Oct 16 2009 %E A166533 Edited by _Charles R Greathouse IV_, Mar 23 2010