This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166542 #32 Mar 04 2024 01:12:12 %S A166542 2,10,8,16,14,22,20,28,26,34,32,40,38,46,44,52,50,58,56,64,62,70,68, %T A166542 76,74,82,80,88,86,94,92,100,98,106,104,112,110,118,116,124,122,130, %U A166542 128,136,134,142,140,148,146,154,152,160,158,166,164,172,170,178,176,184 %N A166542 a(n) = 6*n - a(n-1), with n>1, a(1)=2. %H A166542 Vincenzo Librandi, <a href="/A166542/b166542.txt">Table of n, a(n) for n = 1..1000</a> %H A166542 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A166542 G.f.: -x*(-2-8*x+4*x^2)/((1+x)*(x-1)^2). - _Vincenzo Librandi_, Sep 13 2013 %F A166542 From _G. C. Greubel_, May 16 2016: (Start) %F A166542 E.g.f.: (1/2)*(3*(1 + 2*x)*exp(x) + 5*exp(-x) - 8). %F A166542 a(n) = a(n-1) + a(n-2) - a(n-3). (End) %F A166542 a(n) = 2*A166517(n). - _Philippe Deléham_, Nov 29 2016 %F A166542 Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4 + Pi/(6*sqrt(3)). - _Amiram Eldar_, Feb 23 2023 %t A166542 CoefficientList[Series[-(- 2 - 8 x + 4 x^2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* _Vincenzo Librandi_, Sep 13 2013 *) %t A166542 LinearRecurrence[{1,1,-1}, {2, 10, 8}, 50] (* _G. C. Greubel_, May 16 2016 *) %o A166542 (Magma) [n eq 1 select 2 else 6*n-Self(n-1): n in [1..80]]; // _Vincenzo Librandi_, Sep 13 2013 %K A166542 nonn,easy %O A166542 1,1 %A A166542 _Vincenzo Librandi_, Oct 16 2009