This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166555 #16 Dec 04 2024 13:53:02 %S A166555 1,1,2,1,0,4,1,2,4,8,1,0,0,0,16,1,2,0,0,16,32,1,0,4,0,16,0,64,1,2,4,8, %T A166555 16,32,64,128,1,0,0,0,0,0,0,0,256,1,2,0,0,0,0,0,0,256,512,1,0,4,0,0,0, %U A166555 0,0,256,0,1024,1,2,4,8,0,0,0,0,256,512,1024,2048,1,0,0,0,16,0,0,0,256,0,0,0,4096 %N A166555 Triangle read by rows, T(n, k) = 2^k * A047999(n, k). %C A166555 Number of positive terms in n-th row (n>=0) equals to A000120(n). - _Vladimir Shevelev_, Oct 25 2010 %C A166555 Former name: Triangle read by rows, Sierpinski's gasket, A047999 * (1,2,4,8,...) diagonalized. - _G. C. Greubel_, Dec 02 2024 %H A166555 G. C. Greubel, <a href="/A166555/b166555.txt">Rows n = 0..100 of the triangle, flattened</a> %F A166555 Triangle read by rows, A047999 * Q. A047999 = Sierpinski's gasket, Q = an infinite lower triangular matrix with (1,2,4,8,...) as the main diagonal and the rest zeros. %F A166555 Sum_{k=0..n} T(n, k) = A001317(n). %F A166555 From _G. C. Greubel_, Dec 02 2024: (Start) %F A166555 T(n, k) = 2^k * (binomial(n,k) mod 2). %F A166555 T(n, n) = A000079(n). %F A166555 T(2*n, n) = A000007(n). %F A166555 Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*A038183(n/2) - (1-(-1)^n) *A038183((n-1)/2) ). %F A166555 Sum_{k=0..floor(n/2)} T(n-k, k) = A101624(n). %F A166555 Sum_{k=0..floor((2*m+1)/2)} T(2*m-k+1, k) = A101625(m+1), m >= 0. (End) %e A166555 First few rows of the triangle are: %e A166555 1; %e A166555 1, 2; %e A166555 1, 0, 4; %e A166555 1, 2, 4, 8; %e A166555 1, 0, 0, 0, 16; %e A166555 1, 2, 0, 0, 16,.32; %e A166555 1, 0, 4, 0, 16,..0,..64; %e A166555 1, 2, 4, 8, 16,.32,..64,..128; %e A166555 1, 0, 0, 0,..0,..0,...0,....0,..256; %e A166555 1, 2, 0, 0,..0,..0,...0,....0,..256,...512; %e A166555 1, 0, 4, 0,..0,..0,...0,....0,..256,.....0,...1024; %e A166555 1, 2, 4, 8,..0,..0,...0,....0,..256,...512,...1024,...2048; %e A166555 1, 0, 0, 0, 16,..0,...0,....0,..256,.....0,......0,......0,..4096; %e A166555 ... %t A166555 A166555[n_, k_]:= 2^k*Mod[Binomial[n, k], 2]; %t A166555 Table[A166555[n,k], {n,0,14}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 01 2024 *) %o A166555 (Magma) %o A166555 A166555:= func< n,k | 2^k*( Binomial(n,k) mod 2) >; %o A166555 [A166555(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Dec 01 2024 %o A166555 (SageMath) %o A166555 def A166555(n,k): return 2^k*int(not ~n & k) if k<n+1 else 0 %o A166555 print(flatten([[A166555(n,k) for k in range(n+1)] for n in range(15)])) # _G. C. Greubel_, Dec 01 2024 %Y A166555 Cf. A000007, A000079, A000120, A038183, A147999. %Y A166555 Sums include: A001317 (row), A101624 (diagonal), A101625 (odd rows of signed diagonal). %K A166555 nonn,tabl %O A166555 0,3 %A A166555 _Gary W. Adamson_, Oct 17 2009 %E A166555 New name by _G. C. Greubel_, Dec 02 2024