cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166588 Partial sums of A097331; binomial transform of A166587.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 5, 10, 10, 24, 24, 66, 66, 198, 198, 627, 627, 2057, 2057, 6919, 6919, 23715, 23715, 82501, 82501, 290513, 290513, 1033413, 1033413, 3707853, 3707853, 13402698, 13402698, 48760368, 48760368, 178405158, 178405158, 656043858
Offset: 0

Views

Author

Paul Barry, Oct 17 2009

Keywords

Comments

Hankel transform is A131713. The Hankel transform of the sequence 1,1,2,2,... is A128017(n+3). A155587 doubled.

Programs

  • Mathematica
    CoefficientList[Series[(1+2*x-Sqrt[1-4*x^2])/(2*x*(1-x)), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: (1+2x-sqrt(1-4x^2))/(2x(1-x))=((1+x^2*c(x^2))/(1-x)-1)/x, c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} C(n,k)*A166587(k).
Conjecture: (-n-1)*a(n) + (n+1)*a(n-1) + 4*(n-2)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012
a(n) ~ 2^(n+1/2) * (3-(-1)^n) / (3 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014