cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166618 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

This page as a plain text file.
%I A166618 #11 Nov 26 2020 17:17:04
%S A166618 1,31,930,27900,837000,25110000,753300000,22599000000,677970000000,
%T A166618 20339100000000,610173000000000,18305190000000000,549155699999999535,
%U A166618 16474670999999972100,494240129999998744965,14827203899999949807900
%N A166618 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
%C A166618 The initial terms coincide with those of A170750, although the two sequences are eventually different.
%C A166618 Computed with MAGMA using commands similar to those used to compute A154638.
%H A166618 G. C. Greubel, <a href="/A166618/b166618.txt">Table of n, a(n) for n = 0..500</a>
%H A166618 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, -435).
%F A166618 G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^12 - 29*t^11 - 29*t^10 - 29*t^9 -29*t^8 -29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t +1).
%t A166618 CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 19 2016 *)
%t A166618 coxG[{12,435,-29}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Nov 26 2020 *)
%K A166618 nonn
%O A166618 0,2
%A A166618 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009