This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166623 #61 Mar 20 2025 10:01:22 %S A166623 1,2,1,5,8,1,29,55,1,1,3164,3416,1,3665,1,1,28,96446,923362,1,3435,1, %T A166623 34381388,34381640,1,20017650854,1,93367,30033648031,8936504649405, %U A166623 8936504649431,1,31,93344,17852200903304,606046687989917 %N A166623 Irregular triangle read by rows, in which row n lists the Münchhausen numbers in base n, for 2 <= n. %C A166623 Let N = Sum_i d_i b^i be the base b expansion of N. Then N has the Münchhausen property in base b if and only if N = Sum_i (d_i)^(d_i). %C A166623 Convention: 0^0 = 1. %H A166623 Karl W. Heuer, <a href="/A166623/b166623.txt">Rows n = 2..35, flattened</a> (each row starts with 1) %H A166623 John D. Cook, <a href="http://www.johndcook.com/blog/2016/09/19/munchausen-numbers/">Münchausen numbers</a> (2016) %H A166623 Daan van Berkel, <a href="http://arxiv.org/abs/0911.3038">On a curious property of 3435</a>, arXiv:0911.3038 [math.HO], 2009. %H A166623 Shyam Sunder Gupta, <a href="https://doi.org/10.1007/978-981-97-2465-9_21">Digital Invariants and Narcissistic Numbers</a>, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 21, 513-526. %H A166623 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MuenchhausenNumber.html">Münchhausen Number</a>. %e A166623 For example: the base 4 representation of 29 is [1,3,1] (29 = 1*4^2 + 3*4^1 + 1*4^0). Furthermore, 29 = 1^1 + 3^3 + 1^1. Therefore 29 has the Münchhausen property in base 4. %e A166623 Because 1 = 1^1 in every base, a 1 in the sequence signifies a new base. %e A166623 So the sequence can best be read in the following form: %e A166623 1, 2; %e A166623 1, 5, 8; %e A166623 1, 29, 55; %e A166623 1; %e A166623 1, 3164, 3416; %e A166623 1, 3665; %e A166623 1; %e A166623 1, 28, 96446, 923362; %e A166623 1, 3435; %o A166623 (GAP) next := function(result, n) local i; result[1] := result[1] + 1; i := 1; while result[i] = n do result[i] := 0; i := i + 1; if (i <= Length(result)) then result[i] := result[i] + 1; else Add(result, 1); fi; od; return result; end; munchausen := function(coefficients) local sum, index; sum := 0; for index in coefficients do sum := sum + index^index; od; return sum; end; for m in [2..10] do max := 2*m^m; n := 1; coefficients := [1]; while n <= max do sum := munchausen(coefficients); if (n = sum) then Print(n, "\n"); fi; n := n + 1; coefficients := next(coefficients, m); od; od; %o A166623 (Python) %o A166623 from itertools import combinations_with_replacement %o A166623 from sympy.ntheory.factor_ import digits %o A166623 A166623_list = [] %o A166623 for b in range(2,20): %o A166623 sublist = [] %o A166623 for l in range(1,b+2): %o A166623 for n in combinations_with_replacement(range(b),l): %o A166623 x = sum(d**d for d in n) %o A166623 if tuple(sorted(digits(x,b)[1:])) == n: %o A166623 sublist.append(x) %o A166623 A166623_list.extend(sorted(sublist)) # _Chai Wah Wu_, May 20 2017 %Y A166623 See A046253 for base 10. %K A166623 nonn,base,tabf %O A166623 2,2 %A A166623 Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Oct 18 2009 %E A166623 Edited (but not checked) by _N. J. A. Sloane_, Nov 10 2009 %E A166623 More terms from _Karl W. Heuer_, Aug 06 2011