cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166624 Totally multiplicative sequence with a(p) = 3p for prime p.

This page as a plain text file.
%I A166624 #12 Oct 30 2019 10:54:56
%S A166624 1,6,9,36,15,54,21,216,81,90,33,324,39,126,135,1296,51,486,57,540,189,
%T A166624 198,69,1944,225,234,729,756,87,810,93,7776,297,306,315,2916,111,342,
%U A166624 351,3240,123,1134,129,1188,1215,414,141,11664,441,1350
%N A166624 Totally multiplicative sequence with a(p) = 3p for prime p.
%H A166624 G. C. Greubel, <a href="/A166624/b166624.txt">Table of n, a(n) for n = 1..10000</a>
%F A166624 Multiplicative with a(p^e) = (3p)^e.
%F A166624 If n = Product p(k)^e(k) then a(n) = Product (3*p(k))^e(k).
%F A166624 a(n) = n * A165824(n) = n * 3^bigomega(n) = n * 3^A001222(n).
%F A166624 Dirichlet g.f.: Product_{p prime} 1 / (1 - 3 * p^(1 - s)). - _Ilya Gutkovskiy_, Oct 30 2019
%t A166624 Table[n*3^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, May 19 2016 *)
%Y A166624 Cf. A001222, A165824.
%K A166624 nonn,mult
%O A166624 1,2
%A A166624 _Jaroslav Krizek_, Oct 18 2009