cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166629 Totally multiplicative sequence with a(p) = 8p for prime p.

This page as a plain text file.
%I A166629 #13 Oct 30 2019 12:34:35
%S A166629 1,16,24,256,40,384,56,4096,576,640,88,6144,104,896,960,65536,136,
%T A166629 9216,152,10240,1344,1408,184,98304,1600,1664,13824,14336,232,15360,
%U A166629 248,1048576,2112,2176,2240,147456,296,2432,2496,163840,328,21504,344,22528
%N A166629 Totally multiplicative sequence with a(p) = 8p for prime p.
%H A166629 G. C. Greubel, <a href="/A166629/b166629.txt">Table of n, a(n) for n = 1..10000</a>
%F A166629 Multiplicative with a(p^e) = (8p)^e.
%F A166629 If n = Product p(k)^e(k) then a(n) = Product (8*p(k))^e(k).
%F A166629 a(n) = n * A165829(n) = n * 8^bigomega(n) = n * 8^A001222(n).
%F A166629 Dirichlet g.f.: Product_{p prime} 1 / (1 - 8 * p^(1 - s)). - _Ilya Gutkovskiy_, Oct 30 2019
%t A166629 Table[n*8^PrimeOmega[n], {n, 1, 100}] (* _G. C. Greubel_, May 19 2016 *)
%o A166629 (PARI) a(n) = n*8^bigomega(n); \\ _Michel Marcus_, Oct 30 2019
%Y A166629 Cf. A001222, A165829.
%K A166629 nonn,mult
%O A166629 1,2
%A A166629 _Jaroslav Krizek_, Oct 18 2009