cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166636 Totally multiplicative sequence with a(p) = 6*(p-1) for prime p.

This page as a plain text file.
%I A166636 #14 Feb 05 2025 07:50:50
%S A166636 1,6,12,36,24,72,36,216,144,144,60,432,72,216,288,1296,96,864,108,864,
%T A166636 432,360,132,2592,576,432,1728,1296,168,1728,180,7776,720,576,864,
%U A166636 5184,216,648,864,5184,240,2592,252,2160,3456,792,276,15552,1296,3456
%N A166636 Totally multiplicative sequence with a(p) = 6*(p-1) for prime p.
%H A166636 G. C. Greubel, <a href="/A166636/b166636.txt">Table of n, a(n) for n = 1..10000</a>
%F A166636 Multiplicative with a(p^e) = (6*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (6*(p(k)-1))^e(k).
%F A166636 a(n) = A165827(n) * A003958(n) = 6^bigomega(n) * A003958(n) = 6^A001222(n) * A003958(n).
%t A166636 DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
%t A166636 DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*6^(PrimeOmega[m]), {m, 1, 100}] (* _G. C. Greubel_, May 20 2016 *)
%t A166636 f[p_, e_] := (6*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 17 2023 *)
%Y A166636 Cf. A001222, A003958, A165827.
%K A166636 nonn,easy,mult
%O A166636 1,2
%A A166636 _Jaroslav Krizek_, Oct 18 2009