cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166646 Totally multiplicative sequence with a(p) = 6*(p+1) for prime p.

This page as a plain text file.
%I A166646 #18 Feb 06 2025 08:22:35
%S A166646 1,18,24,324,36,432,48,5832,576,648,72,7776,84,864,864,104976,108,
%T A166646 10368,120,11664,1152,1296,144,139968,1296,1512,13824,15552,180,15552,
%U A166646 192,1889568,1728,1944,1728,186624,228,2160,2016,209952,252,20736,264,23328
%N A166646 Totally multiplicative sequence with a(p) = 6*(p+1) for prime p.
%H A166646 G. C. Greubel, <a href="/A166646/b166646.txt">Table of n, a(n) for n = 1..10000</a>
%F A166646 Multiplicative with a(p^e) = (6*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (6*(p(k)+1))^e(k).
%F A166646 a(n) = A165827(n) * A003959(n) = 6^bigomega(n) * A003959(n) = 6^A001222(n) * A003959(n).
%t A166646 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*6^(PrimeOmega[n]), {n, 1, 100}] (* _G. C. Greubel_, May 20 2016 *)
%t A166646 f[p_, e_] := (6*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 18 2023 *)
%o A166646 (PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 6*(f[k,1]+1)); factorback(f);} \\ _Michel Marcus_, May 21 2016
%Y A166646 Cf. A001222, A003959, A165827.
%K A166646 nonn,easy,mult
%O A166646 1,2
%A A166646 _Jaroslav Krizek_, Oct 18 2009