cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166649 Totally multiplicative sequence with a(p) = 9*(p+1) for prime p.

This page as a plain text file.
%I A166649 #17 Feb 06 2025 08:22:23
%S A166649 1,27,36,729,54,972,72,19683,1296,1458,108,26244,126,1944,1944,531441,
%T A166649 162,34992,180,39366,2592,2916,216,708588,2916,3402,46656,52488,270,
%U A166649 52488,288,14348907,3888,4374,3888,944784,342,4860,4536,1062882,378
%N A166649 Totally multiplicative sequence with a(p) = 9*(p+1) for prime p.
%H A166649 G. C. Greubel, <a href="/A166649/b166649.txt">Table of n, a(n) for n = 1..10000</a>
%F A166649 Multiplicative with a(p^e) = (9*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (9*(p(k)+1))^e(k).
%F A166649 a(n) = A165830(n) * A003959(n) = 9^bigomega(n) * A003959(n) = 9^A001222(n) * A003959(n).
%t A166649 a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*9^(PrimeOmega[n]), {n, 1, 100}] (* _G. C. Greubel_, May 21 2016 *)
%t A166649 f[p_, e_] := (9*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 17 2023 *)
%o A166649 (PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 9*(f[k,1]+1)); factorback(f);} \\ _Michel Marcus_, May 21 2016
%Y A166649 Cf. A001222, A003959, A165830.
%K A166649 nonn,easy,mult
%O A166649 1,2
%A A166649 _Jaroslav Krizek_, Oct 18 2009