This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166692 #16 Apr 24 2023 02:06:24 %S A166692 1,0,1,1,1,2,0,1,2,4,1,1,2,4,8,0,1,2,4,8,16,1,1,2,4,8,16,32,0,1,2,4,8, %T A166692 16,32,64,1,1,2,4,8,16,32,64,128,0,1,2,4,8,16,32,64,128,256,1,1,2,4,8, %U A166692 16,32,64,128,256,512,0,1,2,4,8,16,32,64,128,256,512,1024 %N A166692 Triangle T(n,k) read by rows: T(n,k) = 2^(k-1), k>0, T(n,0) = (n+1) mod 2. %C A166692 Variant of A166918. %H A166692 G. C. Greubel, <a href="/A166692/b166692.txt">Rows n = 0..100 of the triangle, flattened</a> %F A166692 T(2n, k) = A011782(k). %F A166692 T(2n+1, k) = A131577(k). %F A166692 Sum_{k=0..n} T(n,k) = A051049(n). %F A166692 From _G. C. Greubel_, Apr 24 2023: (Start) %F A166692 T(2*n, n) = A011782(n). %F A166692 Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A005578(n). %F A166692 Sum_{k=0..n} T(n-k, k) = A106624(n). (End) %e A166692 Triangle begins as: %e A166692 1; %e A166692 0, 1; %e A166692 1, 1, 2; %e A166692 0, 1, 2, 4; %e A166692 1, 1, 2, 4, 8; %e A166692 0, 1, 2, 4, 8, 16; %t A166692 Join[{1,0},Flatten[Riffle[Table[2^Range[0,n],{n,0,10}],{1,0}]]] (* _Harvey P. Dale_, Jan 18 2015 *) %o A166692 (Magma) %o A166692 A166692:= func< n,k | k eq 0 select ((n+1) mod 2) else 2^(k-1) >; %o A166692 [A166692(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Apr 24 2023 %o A166692 (SageMath) %o A166692 def A166692(n,k): return ((n+1)%2) if (k==0) else 2^(k-1) %o A166692 flatten([[A166692(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Apr 24 2023 %Y A166692 Cf. A005578, A011782, A051049, A131577, A106624, A166494, A166918. %K A166692 nonn,easy,tabl %O A166692 0,6 %A A166692 _Paul Curtz_, Oct 18 2009 %E A166692 More terms from _Harvey P. Dale_, Jan 18 2015