cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166694 A transform of the large Schroeder numbers, A006318.

This page as a plain text file.
%I A166694 #10 May 24 2016 10:24:23
%S A166694 1,2,10,52,290,1706,10440,65822,424710,2791340,18622510,125791894,
%T A166694 858621680,5913143706,41036613570,286702877908,2014876764170,
%U A166694 14234073943986,101025202379480,720017430722598,5151008515543790
%N A166694 A transform of the large Schroeder numbers, A006318.
%C A166694 Apply the Riordan array (1,x/(1-x)^2) to the large Schroeder numbers.
%H A166694 G. C. Greubel, <a href="/A166694/b166694.txt">Table of n, a(n) for n = 0..500</a>
%F A166694 G.f.: (1-3x+x^2-sqrt(1-10x+19x^2-10x^3+x^4))/(2x);
%F A166694 G.f.: 1/(1-2x/((1-x)^2-x/(1-2x/((1-x)^2-x/(1-2x/((1-x)^2-x/(1-2x/(1-... (continued fraction);
%F A166694 a(n) = sum{k=0..n, (0^(n+k)+C(n+k-1,2k-1))*A006318(k)}=0^n + sum{k=0..n, C(n+k-1,2k-1)*A006318(k)}.
%F A166694 Conjecture: (n+1)*a(n) +5*(1-2n)*a(n-1) +19*(n-2)*a(n-2) +5*(7-2*n)*a(n-3) +(n-5)*a(n-4)=0. - _R. J. Mathar_, Nov 16 2011
%t A166694 CoefficientList[Series[(1 - 3*t + t^2 - Sqrt[1 - 10*t + 19*t^2 - 10*t^3 + t^4])/(2*t), {t, 0, 50}], t] (* _G. C. Greubel_, May 23 2016 *)
%K A166694 easy,nonn
%O A166694 0,2
%A A166694 _Paul Barry_, Oct 18 2009