This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166696 #12 May 24 2016 10:24:38 %S A166696 1,3,21,162,1365,12219,114156,1100649,10871175,109438830,1118798079, %T A166696 11583712617,121219182504,1280065637487,13623341795049, %U A166696 145977237305874,1573536198376401,17051418418204671,185646639499541892 %N A166696 A transform of A103210. %C A166696 Partial sums are A166697. %H A166696 G. C. Greubel, <a href="/A166696/b166696.txt">Table of n, a(n) for n = 0..500</a> %F A166696 G.f.: (1-3x+x^2-sqrt(1-14x+27x^2-14x^3+x^4))/(4x); %F A166696 G.f.: 1/(1-3x/((1-x)^2-2x/(1-3x/((1-x)^2-2x/(1-3x/((1-x)^2-2x/(1-3x/(1-... (continued fraction); %F A166696 a(n) = Sum_{k=0..n} (0^(n+k)+C(n+k-1,2k-1))*A103210(k) = 0^n + Sum_{k=0..n} C(n+k-1,2k-1)*A103210(k). %F A166696 Conjecture: (n+1)*a(n) +7*(-2*n+1)*a(n-1) +27*(n-2)*a(n-2) +7*(-2*n+7)*a(n-3) +(n-5)*a(n-4)=0. - _R. J. Mathar_, Feb 10 2015 %p A166696 A166696 := proc(n) %p A166696 if n = 0 then %p A166696 1; %p A166696 else %p A166696 add((0^(n+k)+binomial(n+k-1,2*k-1))*A103210(k),k=0..n) ; %p A166696 end if; %p A166696 end proc: # _R. J. Mathar_, Feb 10 2015 %t A166696 CoefficientList[Series[(1 - 3*t + t^2 - Sqrt[1 - 14*t + 27*t^2 - 14*t^3 + t^4])/(4*t), {t, 0, 50}], t] (* _G. C. Greubel_, May 23 2016 *) %K A166696 easy,nonn %O A166696 0,2 %A A166696 _Paul Barry_, Oct 18 2009 %E A166696 A-number in formula corrected by _R. J. Mathar_, Feb 10 2015