This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166709 #6 Jan 20 2021 08:45:17 %S A166709 1,3,5,9,14,20,25,32,39,49,56,68,78,92,105,115,128,144,157,171,192, %T A166709 211,231,253,276,297,319,339,366,396,419,442,473,500,533,561,592,628, %U A166709 665,691,726,759,794,832,868,900,936,979,1028,1070,1114,1159,1208,1248,1298 %N A166709 Number of distinct integers expressible as sums of consecutive primes up to n-th prime. %C A166709 a(n) <= n(n+1)/2 (= T(n), A000217 Triangular numbers) because some sums give the same value. E.g., a(4)=9, T(4)=10, a(4)=T(4)-1, because 5 is equal to two sums 2+3, and 5. For n=100 "deficit" is 700: a(100)=4350=T(100)-700=5050-700. %H A166709 Zak Seidov, <a href="/A166709/b166709.txt">Table of n, a(n) for n=1..1000</a> %e A166709 n=4: 9 distinct integers = 2, 3, 5, 7, 8(=3+5), 10(=2+3+5), 12(=5+7), 15(=3+5+7), and 17(=2+3+5+7); %e A166709 n=10: 49 distinct integers: 2, 3, 5, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 23, 24, 26, 28, 29, 30, 31, 36, 39, 41, 42, 48, 49, 52, 53, 56, 58, 59, 60, 67, 71, 72, 75, 77, 83, 88, 90, 95, 98, 100, 101, 112, 119, 124, 127, 129. %e A166709 From _Rick L. Shepherd_, Oct 18 2009: (Start) %e A166709 The first 6 rows of actual sums are: %e A166709 n=1: 2 %e A166709 n=2: 2,3,5 %e A166709 n=3: 2,3,5,8,10 %e A166709 n=4: 2,3,5,7,8,10,12,15,17 %e A166709 n=5: 2,3,5,7,8,10,11,12,15,17,18,23,26,28 %e A166709 n=6: 2,3,5,7,8,10,11,12,13,15,17,18,23,24,26,28,31,36,39,41 (End) %t A166709 Table[Length[Union[Total/@Flatten[Table[Partition[Prime[Range[m]],k,1],{k,m}],1]]],{m,100}] %o A166709 (PARI) A166709(n)=#Set(concat(vector(n,i,vector(i,j,sum(k=j,i,prime(k)))))) \\ _M. F. Hasler_, Oct 18 2009 %Y A166709 Cf. A034707 (numbers which are sums of consecutive primes). %Y A166709 Cf. A152415, A152430. %K A166709 nonn %O A166709 1,2 %A A166709 _Zak Seidov_, Oct 18 2009