This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166714 #10 Nov 24 2016 09:45:37 %S A166714 1,41,1640,65600,2624000,104960000,4198400000,167936000000, %T A166714 6717440000000,268697600000000,10747904000000000,429916160000000000, %U A166714 17196646399999999180,687865855999999934400,27514634239999996064820 %N A166714 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I. %C A166714 The initial terms coincide with those of A170760, although the two sequences are eventually different. %C A166714 Computed with MAGMA using commands similar to those used to compute A154638. %H A166714 G. C. Greubel, <a href="/A166714/b166714.txt">Table of n, a(n) for n = 0..500</a> %H A166714 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, -780). %F A166714 G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^12 - 39*t^11 - 39*t^10 - 39*t^9 -39*t^8 -39*t^7 -39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1). %t A166714 CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^12 - 39*t^11 - 39*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 24 2016 *) %K A166714 nonn %O A166714 0,2 %A A166714 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009