A166728 Positive integers with English names ending in "x".
6, 26, 36, 46, 56, 66, 76, 86, 96, 106, 126, 136, 146, 156, 166, 176, 186, 196, 206, 226, 236, 246, 256, 266, 276, 286, 296, 306, 326, 336, 346, 356, 366, 376, 386, 396, 406, 426, 436, 446, 456, 466, 476, 486, 496, 506, 526, 536, 546, 556, 566, 576, 586, 596
Offset: 1
Examples
Fifty-six (56) is a term; sixteen (16) is not a term (but is a term of A060228).
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).
Programs
-
Maple
seq(seq(6+10*i+100*j,i=[0,$2..9]),j=0..10); # Robert Israel, Jul 01 2018
-
Mathematica
Rest@ CoefficientList[Series[x (6 + 20 x + 10 x^2 + 10 x^3 + 10 x^4 + 10 x^5 + 10 x^6 + 10 x^7 + 10 x^8 + 4 x^9)/(1 - x - x^9 + x^10), {x, 0, 54}], x] (* Michael De Vlieger, Jul 01 2018 *)
-
Python
def agen(lim): yield from (k for k in range(6, lim+1, 10) if k%100 != 16) print([an for an in agen(600)]) # Michael S. Branicky, Jun 26 2021
Formula
A017341 MINUS {n | n = 16 mod 100}.
From Robert Israel, Jul 01 2018: (Start)
a(n+9) = a(n)+100.
G.f.: x*(6+20*x+10*x^2+10*x^3+10*x^4+10*x^5+10*x^6+10*x^7+10*x^8+4*x^9)/(1-x-x^9+x^10). (End)