cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060228 Numbers ending in the letter N.

Original entry on oeis.org

7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 27, 37, 47, 57, 67, 77, 87, 97, 107, 110, 111, 113, 114, 115, 116, 117, 118, 119, 127, 137, 147, 157, 167, 177, 187, 197, 207, 210, 211, 213, 214, 215, 216, 217, 218, 219, 227, 237, 247, 257, 267, 277, 287, 297, 307, 310
Offset: 1

Views

Author

Rodolfo Kurchan, Mar 20 2001

Keywords

Comments

All odd primes are in this sequence or A059093. See comments in A166731 about the English names of large numbers (American system, possibly extended). - Rick L. Shepherd, Oct 20 2009

References

  • Rodolfo Kurchan, Mesmerizing Math Puzzles, Sterling Publications, p. 20.

Crossrefs

Cf. A059093 ("e"), A166726 ("o"), A166727 ("r"), A166728 ("x"), A166729 ("t"), A166730 ("y"), A166731 ("d"). - Rick L. Shepherd, Oct 20 2009

Extensions

Terms beyond the first twelve by Rick L. Shepherd, Oct 20 2009

A166726 Nonnegative integers with English names ending in "o".

Original entry on oeis.org

0, 2, 22, 32, 42, 52, 62, 72, 82, 92, 102, 122, 132, 142, 152, 162, 172, 182, 192, 202, 222, 232, 242, 252, 262, 272, 282, 292, 302, 322, 332, 342, 352, 362, 372, 382, 392, 402, 422, 432, 442, 452, 462, 472, 482, 492, 502, 522, 532, 542, 552, 562, 572, 582
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Comments

Two (2) is the only prime number whose English name does not end in "e" or "n".

Examples

			Zero (0) is a term; thirty-two (32) is a term; twelve (12) is not a term (but is a term of A059093).
		

Crossrefs

Formula

{0} UNION (A017293 MINUS {n | n = 12 mod 100}).

A166727 Positive integers with English names ending in "r".

Original entry on oeis.org

4, 24, 34, 44, 54, 64, 74, 84, 94, 104, 124, 134, 144, 154, 164, 174, 184, 194, 204, 224, 234, 244, 254, 264, 274, 284, 294, 304, 324, 334, 344, 354, 364, 374, 384, 394, 404, 424, 434, 444, 454, 464, 474, 484, 494, 504, 524, 534, 544, 554, 564, 574, 584, 594
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Examples

			Fifty-four (54) is a term; fourteen (14) is not a term (but is a term of A060228).
		

Crossrefs

Programs

  • Python
    def a(n): return (n-1)//9*100 + ((n-1)%9 + 1)*((n-1)%9 > 0)*10 + 4
    print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Apr 24 2021

Formula

A017317 MINUS {n | n = 14 mod 100}.
a(n) = a(n-9) + 100, for n >= 10. - Michael S. Branicky, Apr 24 2021

A166728 Positive integers with English names ending in "x".

Original entry on oeis.org

6, 26, 36, 46, 56, 66, 76, 86, 96, 106, 126, 136, 146, 156, 166, 176, 186, 196, 206, 226, 236, 246, 256, 266, 276, 286, 296, 306, 326, 336, 346, 356, 366, 376, 386, 396, 406, 426, 436, 446, 456, 466, 476, 486, 496, 506, 526, 536, 546, 556, 566, 576, 586, 596
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Examples

			Fifty-six (56) is a term; sixteen (16) is not a term (but is a term of A060228).
		

Crossrefs

Programs

  • Maple
    seq(seq(6+10*i+100*j,i=[0,$2..9]),j=0..10); # Robert Israel, Jul 01 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (6 + 20 x + 10 x^2 + 10 x^3 + 10 x^4 + 10 x^5 + 10 x^6 + 10 x^7 + 10 x^8 + 4 x^9)/(1 - x - x^9 + x^10), {x, 0, 54}], x] (* Michael De Vlieger, Jul 01 2018 *)
  • Python
    def agen(lim): yield from (k for k in range(6, lim+1, 10) if k%100 != 16)
    print([an for an in agen(600)]) # Michael S. Branicky, Jun 26 2021

Formula

A017341 MINUS {n | n = 16 mod 100}.
From Robert Israel, Jul 01 2018: (Start)
a(n+9) = a(n)+100.
G.f.: x*(6+20*x+10*x^2+10*x^3+10*x^4+10*x^5+10*x^6+10*x^7+10*x^8+4*x^9)/(1-x-x^9+x^10). (End)

A166729 Positive integers with English names ending in "t".

Original entry on oeis.org

8, 28, 38, 48, 58, 68, 78, 88, 98, 108, 128, 138, 148, 158, 168, 178, 188, 198, 208, 228, 238, 248, 258, 268, 278, 288, 298, 308, 328, 338, 348, 358, 368, 378, 388, 398, 408, 428, 438, 448, 458, 468, 478, 488, 498, 508, 528, 538, 548, 558, 568, 578, 588, 598
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Examples

			Fifty-eight (58) is a term; eighteen (18) is not a term (but is a term of A060228).
		

Crossrefs

Formula

A017365 MINUS {n | n = 18 mod 100}.

A166731 Positive integers with English names ending in "d".

Original entry on oeis.org

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Comments

To avoid ambiguity, the American system is used here; i.e., no names such as "milliard" or "billiard".
Different from multiples of 100 (see example) and from A044332 (10100 is a term of the present sequence). In fact, if all names of multiples of a million are considered to end with an "n" (even beyond the usual naming system: see A146755 for links), those numbers are terms of A060228, not this sequence, meaning this sequence is precisely {positive multiples of 100} MINUS {(positive) multiples of 1000000}.

Examples

			One hundred (100) is a term; one million (1000000) is not a term (but is a term of A060228).
		

Crossrefs

Showing 1-6 of 6 results.