This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166754 #19 Sep 08 2022 08:45:48 %S A166754 1,2,9,22,53,114,241,494,1005,2026,4073,8166,16357,32738,65505,131038, %T A166754 262109,524250,1048537,2097110,4194261,8388562,16777169,33554382, %U A166754 67108813,134217674,268435401,536870854,1073741765,2147483586 %N A166754 a(n) = 4*A061547(n+1) - 3*A166753(n). %H A166754 G. C. Greubel, <a href="/A166754/b166754.txt">Table of n, a(n) for n = 0..1000</a> %H A166754 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-3,2). %F A166754 G.f.: (1-x+4*x^2)/((1+x)*(1-x)^2*(1-2*x)). %F A166754 a(n) = (2^(n+3) + (-1)^n - (4*n+7))/2. %F A166754 a(n) = A000975(n) - 4*A011377(n-2). %F A166754 a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4). %F A166754 E.g.f.: (8*exp(2*x) + exp(-x) - (4*x+7)*exp(x))/2. - _G. C. Greubel_, Jun 04 2019 %t A166754 LinearRecurrence[{3,-1,-3,2}, {1,2,9,22}, 40] (* _G. C. Greubel_, May 24 2016 *) %o A166754 (PARI) my(x='x+O('x^40)); Vec((1-x+4*x^2)/((1+x)*(1-x)^2*(1-2*x))) \\ _G. C. Greubel_, Oct 10 2017 %o A166754 (Magma) [(2^(n+3) +(-1)^n -(4*n+7))/2: n in [0..40]]; // _G. C. Greubel_, Oct 10 2017 %o A166754 (Sage) [(2^(n+3) + (-1)^n - (4*n+7))/2 for n in (0..40)] # _G. C. Greubel_, Jun 04 2019 %o A166754 (GAP) List([0..40], n-> (2^(n+3) + (-1)^n - (4*n+7))/2) # _G. C. Greubel_, Jun 04 2019 %Y A166754 Cf. A061547, A166753. %Y A166754 Cf. A000975, A011377. %K A166754 easy,nonn %O A166754 0,2 %A A166754 _Paul Barry_, Oct 21 2009