This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166810 #20 Nov 24 2015 19:23:45 %S A166810 5,26,82,208,460,922,1714,3001,5003,8006,12374,18562,27130,38758, %T A166810 54262,74611,100945,134594,177098,230228,296008,376738,475018,593773, %U A166810 736279,906190,1107566,1344902,1623158,1947790,2324782,2760679,3262621,3838378,4496386,5245784,6096452,7059050,8145058,9366817 %N A166810 Number of n X 6 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nondecreasing order. %C A166810 This sequence (and A166812, A166813) correspond to k-tuples x with 0<= x(i+1) <= x(i) <= k except (0,0,0..) and (k,k,k...), where x(i) is the index of the first 2 in row i of the array (or 0 if none); the number of those are the binomials minus 2. - _Robert Israel_, Nov 23 2015 %H A166810 Robert Israel, <a href="/A166810/b166810.txt">Table of n, a(n) for n = 1..10000</a> %F A166810 a(n) = A000579(n+6)-2. - _R. J. Mathar_, Nov 24 2015 %F A166810 G.f.: 1 - 2/(1-x) + 1/(1-x)^7. - _Robert Israel_, Nov 24 2015 %e A166810 Some solutions for n=4 %e A166810 ...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.1...1.1.1.1.1.1...1.1.1.1.1.1 %e A166810 ...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.1...1.1.1.1.1.2...1.1.1.1.1.2 %e A166810 ...1.1.1.1.2.2...1.1.1.1.2.2...1.1.1.1.1.2...1.1.1.2.2.2...1.1.1.1.1.2 %e A166810 ...1.1.1.2.2.2...1.1.1.1.2.2...1.1.1.1.2.2...2.2.2.2.2.2...1.1.1.1.1.2 %e A166810 ------ %e A166810 ...1.1.1.1.1.2...1.1.1.2.2.2...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.2 %e A166810 ...1.1.2.2.2.2...1.1.2.2.2.2...1.1.1.1.2.2...1.1.1.1.2.2...1.1.1.1.1.2 %e A166810 ...1.2.2.2.2.2...1.1.2.2.2.2...1.1.1.1.2.2...1.2.2.2.2.2...1.1.2.2.2.2 %e A166810 ...1.2.2.2.2.2...1.1.2.2.2.2...1.1.2.2.2.2...1.2.2.2.2.2...1.1.2.2.2.2 %p A166810 seq(binomial(n+6,6)-2, n=1..100); # _Robert Israel_, Nov 24 2015 %o A166810 (PARI) Vec(1-2/(1-x)+1/(1-x)^7 + O(x^100)) \\ _Altug Alkan_, Nov 24 2015 %K A166810 nonn %O A166810 1,1 %A A166810 _R. H. Hardin_, Oct 21 2009