cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166860 Number of saturated chains in the poset of Dyck paths ordered by inclusion.

This page as a plain text file.
%I A166860 #23 Dec 12 2021 22:31:18
%S A166860 1,1,3,16,191,9586,3621062,13539455808,596242050871827,
%T A166860 358279069210950329112,3339667708892016201497713938,
%U A166860 540966002417189385158099747634890008,1685909333511453301447626182908204645875878754,110859993072493750180447848516163015805399916591746521402
%N A166860 Number of saturated chains in the poset of Dyck paths ordered by inclusion.
%C A166860 Breakdown by length of chain:
%C A166860 n: chains
%C A166860 0:  1;
%C A166860 1:  1;
%C A166860 2:  2,  1;
%C A166860 3:  5,  5,   4,   2;
%C A166860 4: 14, 21,  30,  38,  40,  32,   16;
%C A166860 5: 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768;
%C A166860 Note that for each n, there are C_n chains of length 0 (A000108) and the number of maximal chains is A005118.
%D A166860 R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
%H A166860 J. Woodcock, <a href="http://garsia.math.yorku.ca/~zabrocki/papers/DPfinal.pdf">Properties of the poset of Dyck paths ordered by inclusion</a>
%F A166860 1) For D_i, D_j in D_n, the number of saturated chains = Sum_{D_i<=D_j} (number of standard Young tableaux for D_j\D_i partition).
%F A166860 2) Define zeta(x,y)=1 if x=y or if y immediately covers x in the poset and delta is the identity function. Then the number of saturated chains = sum of entries in the (2*delta - zeta)^(-1) matrix.
%e A166860 For n=3, the Hasse diagram consists of 5 vertices corresponding to the 5 Dyck paths. With area as the rank function, we have one vertex of rank 0, two of rank 1, one of rank 2 and one of rank 3.
%e A166860 There are 16 saturated chains with 5 chains on one vertex, 5 chains on two vertices, 4 chains on three vertices and the 2 maximal chains on four vertices.
%p A166860 # E.g., for n=3, using John Stembridge's Symmetric Functions package:
%p A166860 withSF();
%p A166860 AA:=add(s[op(la)],la=subPar([2,1]));tos(skew(AA,AA));
%p A166860 scalar(%, add(h1^r,r=0..4));
%p A166860 # second Maple program:
%p A166860 d:= proc(x, y, l) option remember;
%p A166860       `if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
%p A166860     end:
%p A166860 a:= proc(n) option remember; local g;
%p A166860       g:= proc(l) option remember;
%p A166860             1 +add(`if`(l[i]>i and (i=1 or l[i-1]<l[i]),
%p A166860                 g(subsop(i=l[i]-1, l)), 0), i=1..n-1)
%p A166860           end;
%p A166860       add(g(j), j=d(n, n, []))
%p A166860     end:
%p A166860 seq(a(n), n=0..10);  # _Alois P. Heinz_, Jul 27 2011
%t A166860 d[x_, y_, l_List] := d[x, y, l] = If[x <= 1, {Join[{y}, l]}, Flatten[Table[d[x-1, i, Join[{y}, l]], {i, x-1, y}], 1]]; a[n_] := a[n] = Module[{g}, g[l_List] := g[l] = 1 + Sum[If[l[[i]] > i && (i == 1 || l[[i-1]] < l[[i]]), g[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, n-1}]; Sum[g[j], {j, d[n, n, {}]}]]; Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Jul 06 2015, after _Alois P. Heinz_ *)
%Y A166860 Cf. A143672, A000108, A005118.
%K A166860 nonn
%O A166860 0,3
%A A166860 Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Oct 21 2009
%E A166860 a(9)-a(13) from _Alois P. Heinz_, Jul 27 2011