This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166879 #10 Jun 02 2012 01:47:00 %S A166879 1,1,9,473,166969,371186249,5020831641761,407273265807001089, %T A166879 196573413317730320842177,561769503571822735164882969633, %U A166879 9474113076734769687535254457293566857,940665572280219007549184269220597591870817337 %N A166879 G.f.: A(x) = exp( Sum_{n>=1} A002203(n^2)/2*x^n/n ). %C A166879 A002203 equals the logarithmic derivative of the Pell numbers (A000129). %C A166879 Note that A002203(n^2) = (1+sqrt(2))^(n^2) + (1-sqrt(2))^(n^2). %H A166879 Paul D. Hanna, <a href="/A166879/b166879.txt">Table of n, a(n) for n = 0..40</a> %F A166879 a(n) == 1 (mod 8). %F A166879 a(n) = (1/n)*Sum_{k=1..n} A002203(k^2)/2*a(n-k) for n>0 with a(0)=1. %F A166879 Self-convolution yields A165937. %e A166879 G.f.: A(x) = 1 + x + 9*x^2 + 473*x^3 + 166969*x^4 + 371186249*x^5 +... %e A166879 log(A(x)) = x + 17*x^2/2 + 1393*x^3/3 + 665857*x^4/4 + 1855077841*x^5/5 + 30122754096401*x^6/6 + 2850877693509864481*x^7/7 +...+ A002203(n^2)/2*x^n/n +... %o A166879 (PARI) {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff((1-x)/(1-2*x-x^2+x*O(x^(m^2))),m^2)*x^m/m)+x*O(x^n)),n))} %o A166879 (PARI) {a(n)=if(n==0,1,(1/n)*sum(k=1,n,polcoeff((1-x)/(1-2*x-x^2+x*O(x^(k^2))),k^2)*a(n-k)))} %Y A166879 Cf. A165937, A165938, A002203, A000129. %K A166879 nonn %O A166879 0,3 %A A166879 _Paul D. Hanna_, Oct 22 2009