cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166884 Triangle, read by rows, that transforms diagonals in the table of coefficients of successive iterations of x+x^2+x^3 (cf. A166880).

This page as a plain text file.
%I A166884 #9 Sep 13 2013 18:53:50
%S A166884 1,1,1,3,2,1,15,9,3,1,114,62,18,4,1,1159,593,157,30,5,1,14838,7266,
%T A166884 1812,316,45,6,1,229401,108720,25989,4271,555,63,7,1,4159662,1922166,
%U A166884 445255,70180,8595,890,84,8,1,86580636,39212154,8865333,1354750,159171,15534,1337,108,9,1
%N A166884 Triangle, read by rows, that transforms diagonals in the table of coefficients of successive iterations of x+x^2+x^3 (cf. A166880).
%H A166884 Paul D. Hanna, <a href="/A166884/b166884.txt">a(n) for n = 0..350</a> (rows 0..25, flattened).
%e A166884 This triangle begins:
%e A166884 1;
%e A166884 1, 1;
%e A166884 3, 2, 1;
%e A166884 15, 9, 3, 1;
%e A166884 114, 62, 18, 4, 1;
%e A166884 1159, 593, 157, 30, 5, 1;
%e A166884 14838, 7266, 1812, 316, 45, 6, 1;
%e A166884 229401, 108720, 25989, 4271, 555, 63, 7, 1;
%e A166884 4159662, 1922166, 445255, 70180, 8595, 890, 84, 8, 1;
%e A166884 86580636, 39212154, 8865333, 1354750, 159171, 15534, 1337, 108, 9, 1;
%e A166884 2034850425, 906623004, 201058614, 30000676, 3418245, 320070, 25963, 1912, 135, 10, 1;
%e A166884 53303009286, 23429034168, 5114874693, 748896765, 83336385, 7568355, 589057, 40882, 2631, 165, 11, 1; ...
%e A166884 Triangle A166880 of coefficients in iterations of x+x^2+x^3 begins:
%e A166884 1;
%e A166884 1,1,1;
%e A166884 1,2,4,6,8,8,6,3,1;
%e A166884 1,3,9,24,60,138,294,579,1053,1767,2739,3924,5196,6352,7152,7389,...;
%e A166884 1,4,16,60,216,744,2460,7818,23910,70446,200160,549006,1455132,...;
%e A166884 1,5,25,120,560,2540,11220,48330,203230,835080,3355950,13200648,...;
%e A166884 1,6,36,210,1200,6720,36930,199365,1058175,5526330,28417200,...;
%e A166884 1,7,49,336,2268,15078,98826,639093,4080531,25738755,160474545,...;
%e A166884 1,8,64,504,3920,30128,228984,1722084,12821788,94556532,...; ...
%e A166884 in which this triangle transforms diagonals in A166880 into each other.
%e A166884 The initial diagonals in triangle A166880 begin:
%e A166884 A166881: [1,1,4,24,216,2540,36930,639093,12821788,292495896,...];
%e A166884 A166882: [1,2,9,60,560,6720,98826,1722084,34700940,793894860,...];
%e A166884 A166883: [1,3,16,120,1200,15078,228984,4085028,83795085,1943920935,...]; ...
%e A166884 so that, if we treat the diagonals as column vectors, we have:
%e A166884 A166884 * A166881 = A166882,
%e A166884 A166884 * A166882 = A166883.
%o A166884 (PARI) {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A166884 for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
%Y A166884 Cf. A166880, columns: A166885, A166886, A166887; A229112 (row sums).
%K A166884 nonn,tabl
%O A166884 0,4
%A A166884 _Paul D. Hanna_, Nov 21 2009