cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166900 Triangle, read by rows, that transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).

This page as a plain text file.
%I A166900 #6 Jan 19 2014 18:54:54
%S A166900 1,1,1,2,4,1,9,21,9,1,64,156,84,16,1,630,1540,935,230,25,1,7916,19160,
%T A166900 12480,3564,510,36,1,121023,288813,196623,61845,10465,987,49,1,
%U A166900 2179556,5123608,3591560,1207696,228800,25864,1736,64,1,45179508,104657520
%N A166900 Triangle, read by rows, that transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888).
%C A166900  Compare to the triangle A071207 that transforms rows into diagonals in the table of iterations of x/(1-x), where A071207(n,k) gives the number of labeled free trees with n vertices and k children of the root that have a label smaller than the label of the root. Does this triangle have a similar interpretation?
%H A166900 Paul D. Hanna, <a href="/A166900/b166900.txt">Table of n, a(n) for n=0..495 (rows 0..30)</a>
%e A166900 Triangle begins:
%e A166900 1;
%e A166900 1, 1;
%e A166900 2, 4, 1;
%e A166900 9, 21, 9, 1;
%e A166900 64, 156, 84, 16, 1;
%e A166900 630, 1540, 935, 230, 25, 1;
%e A166900 7916, 19160, 12480, 3564, 510, 36, 1;
%e A166900 121023, 288813, 196623, 61845, 10465, 987, 49, 1;
%e A166900 2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1;
%e A166900 45179508, 104657520, 74847168, 26415840, 5426949, 695079, 56511, 2844, 81, 1;
%e A166900 1059312264, 2420186616, 1755406674, 642448632, 140247810, 19683060, 1830080, 112520, 4410, 100, 1; ...
%e A166900 Coefficients in self-compositions of (x+x^2) form table A122888:
%e A166900 1;
%e A166900 1, 1;
%e A166900 1, 2, 2, 1;
%e A166900 1, 3, 6, 9, 10, 8, 4, 1;
%e A166900 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
%e A166900 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
%e A166900 1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ...
%e A166900 This triangle T transforms rows of A122888 into diagonals of A122888;
%e A166900 the initial diagonals begin:
%e A166900 A112319: [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...];
%e A166900 A112317: [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028,..];
%e A166900 A112320: [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...].
%e A166900 For example:
%e A166900 T * [1, 0, 0, 0, 0, 0, 0,...]~ = A112319;
%e A166900 T * [1, 1, 0, 0, 0, 0, 0,...]~ = A112317;
%e A166900 T * [1, 2, 2, 1, 0, 0, 0,...]~ = A112320.
%o A166900 (PARI) {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A166900 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
%Y A166900 Cf. A112319, A166901, A166902, A166903, A122888, A135080.
%K A166900 nonn,tabl
%O A166900 0,4
%A A166900 _Paul D. Hanna_, Nov 27 2009