This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166900 #6 Jan 19 2014 18:54:54 %S A166900 1,1,1,2,4,1,9,21,9,1,64,156,84,16,1,630,1540,935,230,25,1,7916,19160, %T A166900 12480,3564,510,36,1,121023,288813,196623,61845,10465,987,49,1, %U A166900 2179556,5123608,3591560,1207696,228800,25864,1736,64,1,45179508,104657520 %N A166900 Triangle, read by rows, that transforms rows into diagonals in the table of coefficients of successive iterations of x+x^2 (cf. A122888). %C A166900 Compare to the triangle A071207 that transforms rows into diagonals in the table of iterations of x/(1-x), where A071207(n,k) gives the number of labeled free trees with n vertices and k children of the root that have a label smaller than the label of the root. Does this triangle have a similar interpretation? %H A166900 Paul D. Hanna, <a href="/A166900/b166900.txt">Table of n, a(n) for n=0..495 (rows 0..30)</a> %e A166900 Triangle begins: %e A166900 1; %e A166900 1, 1; %e A166900 2, 4, 1; %e A166900 9, 21, 9, 1; %e A166900 64, 156, 84, 16, 1; %e A166900 630, 1540, 935, 230, 25, 1; %e A166900 7916, 19160, 12480, 3564, 510, 36, 1; %e A166900 121023, 288813, 196623, 61845, 10465, 987, 49, 1; %e A166900 2179556, 5123608, 3591560, 1207696, 228800, 25864, 1736, 64, 1; %e A166900 45179508, 104657520, 74847168, 26415840, 5426949, 695079, 56511, 2844, 81, 1; %e A166900 1059312264, 2420186616, 1755406674, 642448632, 140247810, 19683060, 1830080, 112520, 4410, 100, 1; ... %e A166900 Coefficients in self-compositions of (x+x^2) form table A122888: %e A166900 1; %e A166900 1, 1; %e A166900 1, 2, 2, 1; %e A166900 1, 3, 6, 9, 10, 8, 4, 1; %e A166900 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1; %e A166900 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...; %e A166900 1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; ... %e A166900 This triangle T transforms rows of A122888 into diagonals of A122888; %e A166900 the initial diagonals begin: %e A166900 A112319: [1, 1, 2, 9, 64, 630, 7916, 121023, 2179556, 45179508, ...]; %e A166900 A112317: [1, 2, 6, 30, 220, 2170, 27076, 409836, 7303164, 149837028,..]; %e A166900 A112320: [1, 3, 12, 70, 560, 5810, 74760, 1153740, 20817588, 430604724, ...]. %e A166900 For example: %e A166900 T * [1, 0, 0, 0, 0, 0, 0,...]~ = A112319; %e A166900 T * [1, 1, 0, 0, 0, 0, 0,...]~ = A112317; %e A166900 T * [1, 2, 2, 1, 0, 0, 0,...]~ = A112320. %o A166900 (PARI) {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, x+x^2+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]} %o A166900 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) %Y A166900 Cf. A112319, A166901, A166902, A166903, A122888, A135080. %K A166900 nonn,tabl %O A166900 0,4 %A A166900 _Paul D. Hanna_, Nov 27 2009