cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166942 One fifth of product plus sum of five consecutive nonnegative numbers.

This page as a plain text file.
%I A166942 #20 Sep 08 2022 08:45:48
%S A166942 2,27,148,509,1350,3031,6056,11097,19018,30899,48060,72085,104846,
%T A166942 148527,205648,279089,372114,488395,632036,807597,1020118,1275143,
%U A166942 1578744,1937545,2358746,2850147,3420172,4077893,4833054,5696095
%N A166942 One fifth of product plus sum of five consecutive nonnegative numbers.
%C A166942 a(n) = ((n*...*(n+4))+(n+...+(n+4)))/5, n >= 0.
%C A166942 Binomial transform of 2, 25, 96, 144, 96, 24, 0, 0, 0, 0, ....
%C A166942 Partial sums of A062938 where initial term 1 is replaced by 2.
%H A166942 Vincenzo Librandi, <a href="/A166942/b166942.txt">Table of n, a(n) for n = 0..1000</a>
%F A166942 a(n) = (n^5 + 10n^4 + 35n^3 + 50n^2 + 29n + 10)/5. - _Charles R Greathouse IV_, Nov 02 2009
%F A166942 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24 for n > 4; a(0)=2, a(1)=27, a(2)=148, a(3)=509, a(4)=1350. - _Klaus Brockhaus_, Nov 14 2009
%F A166942 G.f.: (2+15*x+16*x^2-14*x^3+6*x^4-x^5)/(1-x)^6. - _Klaus Brockhaus_, Nov 14 2009
%e A166942 a(0) = (0*1*2*3*4 + 0 + 1 + 2 + 3 + 4)/5 = (0 + 10)/5 = 2.
%e A166942 a(1) = (1*2*3*4*5 + 1 + 2 + 3 + 4 + 5)/5 = (120 + 15)/5 = 27.
%t A166942 Table[((n+4)*(n+3)*(n+2)*(n+1)*n+(n+4)+(n+3)+(n+2)+(n+1)+n)/5, {n,0,100}]
%t A166942 (Total[#]+Times@@#)/5&/@Partition[Range[0,100],5,1]  (* _Harvey P. Dale_, Mar 05 2011 *)
%o A166942 (Magma) [ (&*s + &+s)/5 where s is [n..n+4]: n in [0..29] ]; // _Klaus Brockhaus_, Nov 14 2009
%Y A166942 Cf. A001477 (nonnegative integers), A062938 (squares of the form n(n+1)(n+2)(n+3)+1), A028387 (n+(n+1)^2), A167875, A166941, A166943.
%K A166942 nonn,easy
%O A166942 0,1
%A A166942 _Vladimir Joseph Stephan Orlovsky_, Oct 24 2009
%E A166942 Edited and offset corrected by _Klaus Brockhaus_, Nov 14 2009