cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166943 One third of product plus sum of six consecutive nonnegative numbers.

This page as a plain text file.
%I A166943 #13 Sep 08 2022 08:45:48
%S A166943 5,247,1689,6731,20173,50415,110897,221779,411861,720743,1201225,
%T A166943 1921947,2970269,4455391,6511713,9302435,13023397,17907159,24227321,
%U A166943 32303083,42504045,55255247,71042449,90417651,114004853,142506055
%N A166943 One third of product plus sum of six consecutive nonnegative numbers.
%C A166943 a(n) = ((n*...*(n+5))+(n+...+(n+5)))/3, n >= 0.
%C A166943 Binomial transform of 5, 242, 1200, 2400, 2400, 1200, 240, 0, 0, 0, 0, ....
%H A166943 Vincenzo Librandi, <a href="/A166943/b166943.txt">Table of n, a(n) for n = 0..1000</a>
%F A166943 a(n) = (n^6 + 15n^5 + 85n^4 + 225n^3 + 274n^2 + 126n + 15)/3. - _Charles R Greathouse IV_, Nov 04 2009
%F A166943 a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6)+240 for n > 5; a(0)=5, a(1)=247, a(2)=1689, a(3)=6731, a(4)=20173, a(5)=50415. - _Klaus Brockhaus_, Nov 14 2009
%F A166943 G.f.: (5+212*x+65*x^2-80*x^3+55*x^4-20*x^5+3*x^6)/(1-x)^7. - _Klaus Brockhaus_, Nov 14 2009
%e A166943 a(0) = (0*1*2*3*4*5+0+1+2+3+4+5)/3 = (0+15)/3 = 5.
%e A166943 a(1) = (1*2*3*4*5*6+1+2+3+4+5+6)/3 = (720+21)/3 = 247.
%t A166943 lst={};Do[p=(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n+(n+5)+(n+4)+(n+3)+(n+2)+(n+1)+n;AppendTo[lst,p/3],{n,0,5!}];lst
%t A166943 (Plus@@#+Times@@#)/3&/@Partition[Range[0,30],6,1] (* _Harvey P. Dale_, Nov 10 2009 *)
%o A166943 (Magma) [ (&*s + &+s)/3 where s is [n..n+5]: n in [0..25] ]; // _Klaus Brockhaus_, Nov 14 2009
%Y A166943 Cf. A001477 (nonnegative integers), A028387 (n+(n+1)^2), A167875, A166941, A166942.
%K A166943 nonn,easy
%O A166943 0,1
%A A166943 _Vladimir Joseph Stephan Orlovsky_, Oct 24 2009
%E A166943 Edited and offset corrected by _Klaus Brockhaus_, Nov 14 2009