This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166973 #17 Aug 13 2017 05:04:12 %S A166973 1,1,1,1,7,1,1,43,18,1,1,259,241,34,1,1,1555,2910,785,55,1,1,9331, %T A166973 33565,15470,1940,81,1,1,55987,378546,281085,56210,4046,112,1,1, %U A166973 335923,4219993,4875906,1461495,161406,7518,148,1,1,2015539,46755846,82234489 %N A166973 Triangle T(n,k) read by rows: T(n, k) = (m*n - m*k + 1)*T(n - 1, k - 1) + (5*k - 4)*(m*k - (m - 1))*T(n - 1, k) where m = 0. %C A166973 The recursion T(n, k) = (m*n - m*k + 1)*T(n-1, k-1) + (5*k - 4)*(m*k - (m - 1))*T(n-1, k) was intended to range over m values 0 to 4 as given by the original Mathematica code. This sequences is the case for m = 0. - _G. C. Greubel_, May 29 2016 %C A166973 With offset 0 in the rows and columns this is the Sheffer triangle S2[5,1] = (exp(x), (exp(5*x) - 1)/5). See S2[4,1] = A111578 (with offsets 0), S[3,1] = A111577 (with offsets 0), S2[2,1] = A039755 %H A166973 G. C. Greubel, <a href="/A166973/b166973.txt">Table of n, a(n) for the first 25 rows</a> %F A166973 T(n, k) = T(n - 1, k - 1) + (5*k - 4)*T(n - 1, k). %F A166973 E.g.f. column k: int(exp(x)*((exp(5*x)-1)/5)^(k-1)/(k-1)!, x) + (-1)^k/A008548(k). - _Wolfdieter Lang_, Aug 13 2017 %e A166973 Triangle T(n, k) starts: %e A166973 n\k 1 2 3 4 5 6 7 8 9 10 ... %e A166973 1: 1 %e A166973 2: 1 1 %e A166973 3: 1 7 1 %e A166973 4: 1 43 18 1 %e A166973 5: 1 259 241 34 1 %e A166973 6: 1 1555 2910 785 55 1 %e A166973 7: 1 9331 33565 15470 1940 81 1 %e A166973 8: 1 55987 378546 281085 56210 4046 112 1 %e A166973 9: 1 335923 4219993 4875906 1461495 161406 7518 148 1 %e A166973 10: 1 2015539 46755846 82234489 35567301 5658051 394464 12846 189 1 %e A166973 ... Reformatted, - _Wolfdieter Lang_, Aug 13 2017 %t A166973 A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n - 1, k - 1] + (5*k - 4)*A[n - 1,k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by _G. C. Greubel_, May 29 2016 *) %Y A166973 Cf. A111577. %Y A166973 S2[4,1] = A111578 (with offsets 0), S2[3,1] = A111577 (with offsets 0), S2[2,1] = A039755. - _Wolfdieter Lang_, Aug 13 2017 %K A166973 nonn,easy,tabl %O A166973 1,5 %A A166973 _Roger L. Bagula_, Oct 26 2009