This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166988 #8 Aug 14 2013 09:27:51 %S A166988 392,14792,19652,48668,55112,197192,291848,783752,908552,963272, %T A166988 1203052,1541768,1670792,5081672,5903048,8193532,9732872,10089032, %U A166988 10285412,12241352,13333448,13960328,14087432,14818568,15882248,16290632 %N A166988 Products n of a square of a prime and a cube of a prime such that n-1 and n+1 are semiprimes. %C A166988 Intersection of A143610 and A124936. %H A166988 Vincenzo Librandi, <a href="/A166988/b166988.txt">Table of n, a(n) for n = 1..112</a> %e A166988 392 = 7^2*2^3; 391 = 17*23 and 393 = 3*131 are semiprimes, hence 392 is in the sequence. %e A166988 14792 = 2^3*43^2 is in the sequence because 14791=7*2113 and 14793=3*4931 are semiprimes. %t A166988 f2[n_]:=Last/@FactorInteger[n]=={2,3}||Last/@FactorInteger[n]=={3,2}; f1[n_]:=Plus@@Last/@FactorInteger[n]==2; lst={};Do[If[f2[n],If[f1[n-1]&&f1[n+1],AppendTo[lst,n]]],{n,10!}];lst %t A166988 With[{prs=Prime[Range[300]]},Union[Select[Times@@@Tuples[{prs^2, prs^3}], PrimeOmega[#-1] == PrimeOmega[#+1]==2&]]] (* _Harvey P. Dale_, Aug 13 2013 *) %o A166988 (PARI) {m=17000000; v=[]; forprime(j=2, sqrtint(m\8), a=j^2; g=sqrtn(m\a, 3); forprime(k=2, g, n=a*k^3; if(n<m, if(bigomega(n-1)==2&&bigomega(n+1)==2, v=concat(v, n))))); Vec(listsort(List(v), 1))} \\ _Klaus Brockhaus_, Oct 29 2009 %Y A166988 Cf. A001248 (squares of primes), A030078 (cubes of primes), A001358 (semiprimes). %K A166988 nonn %O A166988 1,1 %A A166988 _Vladimir Joseph Stephan Orlovsky_, Oct 26 2009 %E A166988 Edited by _Klaus Brockhaus_ and R. J. Mathar, Oct 28 2009