cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167006 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).

This page as a plain text file.
%I A167006 #19 Jan 19 2019 07:03:33
%S A167006 1,2,6,66,4258,1337374,1933082159,11353941470188,291885138650054688,
%T A167006 29463501750534915665304,12844314786465829040693498639,
%U A167006 21675661852919288704454219459892060,156969579902607123047763327413679853875703
%N A167006 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) ).
%C A167006 Logarithmic derivative yields A167009.
%C A167006 Equals row sums of triangle A209196.
%H A167006 Seiichi Manyama, <a href="/A167006/b167006.txt">Table of n, a(n) for n = 0..57</a>
%e A167006 G.f.: A(x) = 1 + 2*x + 6*x^2 + 66*x^3 + 4258*x^4 + 1337374*x^5 +...
%e A167006 log(A(x)) = 2*x + 8*x^2/2 + 170*x^3/3 + 16512*x^4/4 + 6643782*x^5/5 + 11582386286*x^6/6 +...+ A167009(n)*x^n/n +...
%o A167006 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m^2,k*m))*x^m/m)+x*O(x^n)),n)}
%o A167006 for(n=0,20,print1(a(n),", "))
%Y A167006 Cf. A167009, A209196, A155200.
%Y A167006 Cf. variants: A206848, A228809.
%K A167006 nonn
%O A167006 0,2
%A A167006 _Paul D. Hanna_, Nov 17 2009