This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167010 #39 Aug 26 2022 17:41:53 %S A167010 1,2,6,56,1810,206252,86874564,132282417920,770670360699138, %T A167010 16425660314368351892,1367610300690018553312276, %U A167010 419460465362069257397304825200,509571049488109525160616367158261124,2290638298071684282149128235413262383804352 %N A167010 a(n) = Sum_{k=0..n} C(n,k)^n. %C A167010 The number of n*n 0-1 matrices with equal numbers of nonzeros in every row. - _David Eppstein_, Jan 19 2012 %H A167010 Vincenzo Librandi, <a href="/A167010/b167010.txt">Table of n, a(n) for n = 0..59</a> %H A167010 Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Interesting asymptotic formulas for binomial sums</a>, Jun 09 2013. %F A167010 Ignoring initial term, equals the logarithmic derivative of A167007. [_Paul D. Hanna_, Nov 18 2009] %F A167010 If n is even then a(n) ~ c * exp(-1/4) * 2^(n^2 + n/2)/((Pi*n)^(n/2)), where c = Sum_{k = -oo..oo} exp(-2*k^2) = 1.271341522189... (see A218792). - _Vaclav Kotesovec_, Nov 05 2012 %F A167010 If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - _Vaclav Kotesovec_, Nov 06 2012 %F A167010 a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^2. - _Ilya Gutkovskiy_, Jul 15 2020 %e A167010 The triangle A209427 of coefficients C(n,k)^n, n>=k>=0, begins: %e A167010 1; %e A167010 1, 1; %e A167010 1, 4, 1; %e A167010 1, 27, 27, 1; %e A167010 1, 256, 1296, 256, 1; %e A167010 1, 3125, 100000, 100000, 3125, 1; %e A167010 1, 46656, 11390625, 64000000, 11390625, 46656, 1; ... %e A167010 in which the row sums form this sequence. %t A167010 Table[Sum[Binomial[n, k]^n, {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 05 2012 *) %o A167010 (PARI) a(n)=sum(k=0,n,binomial(n,k)^n) %o A167010 (Magma) [(&+[Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Aug 26 2022 %o A167010 (SageMath) [sum(binomial(n,j)^n for j in (0..n)) for n in (0..20)] # _G. C. Greubel_, Aug 26 2022 %Y A167010 Cf. A000312, A014062, A066300, A167009, A167007, A209427, A218792. %K A167010 nonn,nice %O A167010 0,2 %A A167010 _Paul D. Hanna_, Nov 17 2009