cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167029 Difference between the number of positive and negative terms in the expansion of a skew symmetric matrix of order n.

Original entry on oeis.org

1, 0, 2, 0, 8, 0, 18, 0, 578, 0, -15460, 0, 1012512, 0, -81237604, 0, 8572174172, 0, -1139408178984, 0, 186543348044576, 0, -36888247922732008, 0, 8669441321229610968, 0, -2388740252077518073072, 0, 762715125987833507921408, 0, -279382350611903941569174000, 0
Offset: 1

Views

Author

Pietro Majer, Oct 27 2009

Keywords

Comments

For even n, a(n)=0.

Crossrefs

Cf. A167028.

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[Sqrt[Cosh[x]]*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!]] (* Vaclav Kotesovec, Feb 15 2015 *)

Formula

E.g.f. (for offset 2): sqrt(cosh(x))*exp(x^2/4).
Asymptotics (for even n): a(n)=exp(Pi^2/16)*(2^(n-2))*(n!)*(Pi^(-n))*n^(3/4)*(1+O(1/n)) [This formula is wrong. - Vaclav Kotesovec, Feb 15 2015]
If n is odd |a(n)| ~ exp(-Pi^2/16) * 2^(n+1/2) * n! / (sqrt(n) * Pi^(n+1)). - Vaclav Kotesovec, Feb 15 2015

Extensions

More terms from Vaclav Kotesovec, Feb 15 2015