cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167050 Squarefree numbers with as many decimal digits as distinct prime factors.

This page as a plain text file.
%I A167050 #46 Jun 26 2021 17:12:24
%S A167050 2,3,5,7,10,14,15,21,22,26,33,34,35,38,39,46,51,55,57,58,62,65,69,74,
%T A167050 77,82,85,86,87,91,93,94,95,102,105,110,114,130,138,154,165,170,174,
%U A167050 182,186,190,195,222,230,231,238,246,255,258,266,273,282,285,286,290,310
%N A167050 Squarefree numbers with as many decimal digits as distinct prime factors.
%C A167050 From _Bernard Schott_, Feb 02 2013: (Start)
%C A167050 These numbers appear in 1999 during the XV Gara Nazionale di Matematica, exercise 2, in Italia. [See Link]
%C A167050 Another definition (1): If p_1 < p_2 < p_3 < ... < p_r are r distinct primes, then n is in this sequence if 10^r <= n = p_1*p_2*...*p_r < 10^(r+1).
%C A167050 Another definition (2): If p_1 < p_2 < p_3 < ... < p_r are r distinct primes, then n = p_1*p_2*...*p_r has r digits in base ten.
%C A167050 These numbers are called "equilibrato" in Italian and translated "balanced" in English [see reference Crux Mathematicorum], I propose "nombres équilibrés" in French.
%C A167050 This sequence is finite, a proof without words:
%C A167050 2*3*5*7*11*13*17*19*23*29 = 6469693230 < 10^{10}
%C A167050 2*3*5*7*11*13*17*19*23*29*31 = 200560490130 > 10^{11}.
%C A167050 Two natural open questions:
%C A167050 --> 1) What is the last term of this sequence?
%C A167050 The last term is 9592993410 = 2*3*5*7*11*13*17*19*23*43.
%C A167050 --> 2) How many numbers in this sequence?
%C A167050 This sequence contains 4352 elements.
%C A167050 Concerning these two questions, I used the French mathematical forum les-mathematiques.net with the help of "JLT" and "Juge Ti" to confirm and solve them: see Link.
%C A167050 Subsequence of A115024. (End)
%D A167050 R. E. Woodrow, The Olympiad Corner, No. 226, Crux Mathematicorum, v28-n8(2002), 481.
%H A167050 Charles R Greathouse IV, <a href="/A167050/b167050.txt">Table of n, a(n) for n = 1..4352</a> (complete sequence).
%H A167050 XV Gara Nazionale di Matematica, <a href="http://andfog.altervista.org/math/Cesenatico/Cesenatico%201999.pdf">Cesenatico, 7 Maggio 1999, exercise 2</a>.
%H A167050 Bernard Schott, <a href="/A167050/a167050.pdf">List of the 4352 terms of the sequence A167050</a>.
%H A167050 Juge Ti, Bernard Schott, Jean-Louis Tu and Norbert Verdier, <a href="http://www.les-mathematiques.net/phorum/read.php?17,813305,813305#msg-813305">QDV 17: Question ouverte sans titre</a> (French mathematical forum les-mathematiques.net).
%H A167050 <a href="/index/O#Olympiads">Index to sequences related to Olympiads and other Mathematical competitions</a>.
%F A167050 Intersection of A005117 and A165256.
%e A167050 138 = 2*3*23 and 138 is squarefree with three digits.
%p A167050 A001221 := proc(n) nops(numtheory[factorset](n)) ; end:
%p A167050 A055642 := proc(n) max(1,ilog10(n)+1) ; end:
%p A167050 isA167050 := proc(n) numtheory[issqrfree](n) and A055642(n) = A001221(n) end:
%p A167050 for n from 1 to 300 do if isA167050(n) then printf("%d,",n) ; fi; end do; # _R. J. Mathar_, Nov 03 2009
%p A167050 A Maple program is proposed by "Juge Ti" on the French mathematical forum in link for answering to the two questions (last number and cardinal of this set).
%t A167050 Select[Range[400],SquareFreeQ[#]&&PrimeNu[#]==IntegerLength[#]&] (* _Harvey P. Dale_, Jun 26 2021 *)
%o A167050 (PARI) is(n)=issquarefree(n)&&#Str(n)==omega(n) \\ _Charles R Greathouse IV_, Feb 04 2013
%Y A167050 Intersection of A165256 and A115024.
%Y A167050 Cf. A115024, A165256.
%K A167050 nonn,base,fini,full
%O A167050 1,1
%A A167050 _Claudio Meller_, Oct 27 2009
%E A167050 Definition rephrased and formula added by _R. J. Mathar_, Nov 05 2009