This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167061 #10 Aug 23 2023 09:44:05 %S A167061 40,47040,48384000,49461807360,50545351901000,51651393970176000, %T A167061 52781550346052950760,53936428658183506928640, %U A167061 55116575633234676605184000,56322544581812152703647896000,57554900528304912551898910864840,58814220831251084699615165546496000,60101095479875496770600392870888679560 %N A167061 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}}. %D A167061 F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154. %H A167061 P. Raff, <a href="/A167061/b167061.txt">Table of n, a(n) for n = 1..200</a> %H A167061 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A167061 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a> %H A167061 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A167061 P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008. %H A167061 P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-15-23-24-25-34/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}}.</a> Contains sequence, recurrence, generating function, and more. %H A167061 P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>. %H A167061 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A167061 a(n) = 1152 a(n-1) %F A167061 - 138048 a(n-2) %F A167061 + 5263416 a(n-3) %F A167061 - 72792384 a(n-4) %F A167061 + 279916416 a(n-5) %F A167061 - 429599666 a(n-6) %F A167061 + 279916416 a(n-7) %F A167061 - 72792384 a(n-8) %F A167061 + 5263416 a(n-9) %F A167061 - 138048 a(n-10) %F A167061 + 1152 a(n-11) %F A167061 - a(n-12) %F A167061 G.f.: -40x(x^10 +24x^9 -7104x^8 +167016x^7 -378475x^6 +378475x^4 -167016x^3 +7104x^2 -24x -1)/ (x^12 -1152x^11 +138048x^10 -5263416x^9 +72792384x^8 -279916416x^7 +429599666x^6 -279916416x^5 +72792384x^4 -5263416x^3 +138048x^2 -1152x +1). %K A167061 nonn %O A167061 1,1 %A A167061 _Paul Raff_