This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167063 #17 Aug 23 2023 10:18:04 %S A167063 21,16905,11515392,7766579625,5234202655605,3527304596766720, %T A167063 2377020102892371573,1601852459790100499625,1079473906452564386072064, %U A167063 727447713589013080159967625,490220442215546503112745464469,330355127203424593855513657344000,222623335689469074506271256084716693 %N A167063 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}}. %D A167063 F. Faase, On the number of specific spanning subgraphs of the graphs a X P_n, Ars Combin. 49 (1998), 129-154. %H A167063 P. Raff, <a href="/A167063/b167063.txt">Table of n, a(n) for n = 1..200</a> %H A167063 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A167063 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a> %H A167063 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A167063 P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008. %H A167063 P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-15-23-24-35/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {3, 5}}.</a> Contains sequence, recurrence, generating function, and more. %H A167063 P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>. %H A167063 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A167063 a(n) = 805 a(n-1) %F A167063 - 94300 a(n-2) %F A167063 + 4128845 a(n-3) %F A167063 - 82955561 a(n-4) %F A167063 + 801676960 a(n-5) %F A167063 - 3659544950 a(n-6) %F A167063 + 8726681390 a(n-7) %F A167063 - 11584112776 a(n-8) %F A167063 + 8726681390 a(n-9) %F A167063 - 3659544950 a(n-10) %F A167063 + 801676960 a(n-11) %F A167063 - 82955561 a(n-12) %F A167063 + 4128845 a(n-13) %F A167063 - 94300 a(n-14) %F A167063 + 805 a(n-15) %F A167063 - a(n-16) %F A167063 G.f.: -21x(x^14 -5373x^12 +196420x^11 -2311184x^10 +8452500x^9 -10863790x^8 +10863790x^6 -8452500x^5 +2311184x^4 -196420x^3 +5373x^2 -1)/ (x^16 -805x^15 +94300x^14 -4128845x^13 +82955561x^12 -801676960x^11 +3659544950x^10 -8726681390x^9 +11584112776x^8 -8726681390x^7 +3659544950x^6 -801676960x^5 +82955561x^4 -4128845x^3 +94300x^2 -805x +1). %K A167063 nonn,easy %O A167063 1,1 %A A167063 _Paul Raff_