This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167070 #11 Aug 23 2023 10:18:21 %S A167070 1,201,27872,3656793,474581525,61445719296,7951276371389, %T A167070 1028790034978377,133107787044919648,17221739109190982025, %U A167070 2228177484370996025801,288285215706960759705600,37298804748402271018820409,4825779209505263485071458889 %N A167070 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}}. %D A167070 F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154. %H A167070 P. Raff, <a href="/A167070/b167070.txt">Table of n, a(n) for n = 1..200</a> %H A167070 P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008. %H A167070 P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-25/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}}.</a> Contains sequence, recurrence, generating function, and more. %H A167070 P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>. %H A167070 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A167070 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a> %H A167070 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A167070 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A167070 a(n) = 201 a(n-1) %F A167070 - 11104 a(n-2) %F A167070 + 259893 a(n-3) %F A167070 - 3001225 a(n-4) %F A167070 + 18824856 a(n-5) %F A167070 - 67848270 a(n-6) %F A167070 + 144802410 a(n-7) %F A167070 - 186068896 a(n-8) %F A167070 + 144802410 a(n-9) %F A167070 - 67848270 a(n-10) %F A167070 + 18824856 a(n-11) %F A167070 - 3001225 a(n-12) %F A167070 + 259893 a(n-13) %F A167070 - 11104 a(n-14) %F A167070 + 201 a(n-15) %F A167070 - a(n-16) %F A167070 G.f.: -x(x^14 -1425x^12 +26532x^11 -180448x^10 +545916x^9 -661242x^8 +661242x^6 -545916x^5 +180448x^4 -26532x^3 +1425x^2 -1)/ (x^16 -201x^15 +11104x^14 -259893x^13 +3001225x^12 -18824856x^11 +67848270x^10 -144802410x^9 +186068896x^8 -144802410x^7 +67848270x^6 -18824856x^5 +3001225x^4 -259893x^3 +11104x^2 -201x +1). %K A167070 nonn %O A167070 1,2 %A A167070 _Paul Raff_