cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167071 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}.

This page as a plain text file.
%I A167071 #12 Aug 23 2023 10:18:17
%S A167071 4,1376,361860,92544256,23575404820,6002044445280,1527898117755412,
%T A167071 388939442019315712,99007542753465378420,25203122804459545322080,
%U A167071 6415645979596681028789108,1633151297922105531036929280,415731036835959295502046104100,105827485262836457484100780941664
%N A167071 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}.
%D A167071 F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
%H A167071 P. Raff, <a href="/A167071/b167071.txt">Table of n, a(n) for n = 1..200</a>
%H A167071 P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008.
%H A167071 P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-25-35/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}.</a> Contains sequence, recurrence, generating function, and more.
%H A167071 P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>.
%H A167071 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
%H A167071 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>
%H A167071 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>
%H A167071 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A167071 a(n) = 344 a(n-1)
%F A167071 - 25540 a(n-2)
%F A167071 + 745448 a(n-3)
%F A167071 - 10445708 a(n-4)
%F A167071 + 76194968 a(n-5)
%F A167071 - 303860988 a(n-6)
%F A167071 + 687124520 a(n-7)
%F A167071 - 899525622 a(n-8)
%F A167071 + 687124520 a(n-9)
%F A167071 - 303860988 a(n-10)
%F A167071 + 76194968 a(n-11)
%F A167071 - 10445708 a(n-12)
%F A167071 + 745448 a(n-13)
%F A167071 - 25540 a(n-14)
%F A167071 + 344 a(n-15)
%F A167071 - a(n-16)
%F A167071 G.f.: -4x (x^14 -2331x^12 +56416x^11 -467115x^10 +1546624x^9 -1949983x^8 +1949983x^6 -1546624x^5 +467115x^4 -56416x^3 +2331x^2 -1)/ (x^16 -344x^15 +25540x^14 -745448x^13 +10445708x^12 -76194968x^11 +303860988x^10 -687124520x^9 +899525622x^8 -687124520x^7 +303860988x^6 -76194968x^5 +10445708x^4 -745448x^3 +25540x^2 -344x+1).
%K A167071 nonn
%O A167071 1,1
%A A167071 _Paul Raff_