This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167071 #12 Aug 23 2023 10:18:17 %S A167071 4,1376,361860,92544256,23575404820,6002044445280,1527898117755412, %T A167071 388939442019315712,99007542753465378420,25203122804459545322080, %U A167071 6415645979596681028789108,1633151297922105531036929280,415731036835959295502046104100,105827485262836457484100780941664 %N A167071 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}. %D A167071 F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154. %H A167071 P. Raff, <a href="/A167071/b167071.txt">Table of n, a(n) for n = 1..200</a> %H A167071 P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008. %H A167071 P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-25-35/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}}.</a> Contains sequence, recurrence, generating function, and more. %H A167071 P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>. %H A167071 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A167071 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a> %H A167071 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A167071 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A167071 a(n) = 344 a(n-1) %F A167071 - 25540 a(n-2) %F A167071 + 745448 a(n-3) %F A167071 - 10445708 a(n-4) %F A167071 + 76194968 a(n-5) %F A167071 - 303860988 a(n-6) %F A167071 + 687124520 a(n-7) %F A167071 - 899525622 a(n-8) %F A167071 + 687124520 a(n-9) %F A167071 - 303860988 a(n-10) %F A167071 + 76194968 a(n-11) %F A167071 - 10445708 a(n-12) %F A167071 + 745448 a(n-13) %F A167071 - 25540 a(n-14) %F A167071 + 344 a(n-15) %F A167071 - a(n-16) %F A167071 G.f.: -4x (x^14 -2331x^12 +56416x^11 -467115x^10 +1546624x^9 -1949983x^8 +1949983x^6 -1546624x^5 +467115x^4 -56416x^3 +2331x^2 -1)/ (x^16 -344x^15 +25540x^14 -745448x^13 +10445708x^12 -76194968x^11 +303860988x^10 -687124520x^9 +899525622x^8 -687124520x^7 +303860988x^6 -76194968x^5 +10445708x^4 -745448x^3 +25540x^2 -344x+1). %K A167071 nonn %O A167071 1,1 %A A167071 _Paul Raff_