This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167072 #12 Aug 23 2023 10:18:11 %S A167072 12,6720,3110400,1423806720,651286330860,297900675072000, %T A167072 136260356109480876,62325740425973498880,28507909150300692211200, %U A167072 13039570449847302883368000,5964323676112090939594326348,2728092696767010687412666368000,1247834652562251646622689145644236 %N A167072 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}}. %D A167072 F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154. %H A167072 P. Raff, <a href="/A167072/b167072.txt">Table of n, a(n) for n = 1..200</a> %H A167072 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A167072 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a> %H A167072 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A167072 P. Raff, <a href="http://arxiv.org/abs/0809.2551">Spanning Trees in Grid Graphs</a>, arXiv:0809.2551 [math.CO], 2008. %H A167072 P. Raff, <a href="http://www.math.rutgers.edu/~praff/span/5/12-13-14-25-35-45/index.xml">Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, {4, 5}}.</a> Contains sequence, recurrence, generating function, and more. %H A167072 P. Raff, <a href="http://www.myraff.com/projects/spanning-trees-in-grid-graphs">Analysis of the Number of Spanning Trees of Grid Graphs</a>. %H A167072 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A167072 a(n) = 525 a(n-1) %F A167072 - 32415 a(n-2) %F A167072 + 696920 a(n-3) %F A167072 - 5936265 a(n-4) %F A167072 + 19827675 a(n-5) %F A167072 - 29313582 a(n-6) %F A167072 + 19827675 a(n-7) %F A167072 - 5936265 a(n-8) %F A167072 + 696920 a(n-9) %F A167072 - 32415 a(n-10) %F A167072 + 525 a(n-11) %F A167072 - a(n-12). %F A167072 G.f.: -12x (x^10 +35x^9 -2385x^8 +26040x^7 -54030x^6 +54030x^4 -26040x^3 +2385x^2 -35x-1) / (x^12 -525x^11 +32415x^10 -696920x^9 +5936265x^8 -19827675x^7 +29313582x^6 -19827675x^5 +5936265x^4 -696920x^3 +32415x^2 -525x+1). %K A167072 nonn %O A167072 1,1 %A A167072 _Paul Raff_, Jun 01 2010