A167185 Largest prime power <= n that is not prime.
1, 1, 1, 4, 4, 4, 4, 8, 9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 25, 27, 27, 27, 27, 27, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 1
Examples
For a(14), 10, 12, and 14 are not prime powers, and 11 and 13 are prime powers but they are prime. Since 9 = 3^3 is a prime power, a(14) = 9.
Links
- Robert Price, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Mathematica
Array[SelectFirst[Range[#, 1, -1], Or[And[! PrimeQ@ #, PrimePowerQ@ #], # == 1] &] &, 74] (* Michael De Vlieger, Jun 14 2017 *)
-
PARI
isA025475(n) = (omega(n) == 1 & !isprime(n)) || (n == 1) A167185(n) = {local(m);m=n;while(!isA025475(m),m--);m}
-
Python
from sympy import factorint def A167185(n): return next(filter(lambda m:len(f:=factorint(m))<=1 and max(f.values(),default=2)>1, range(n,0,-1))) # Chai Wah Wu, Oct 25 2024
-
Sage
p = [n for n in (1..81) if (is_prime_power(n) or n == 1) and not is_prime(n)] r = [[p[i]]*(p[i+1] - p[i]) for i in (0..9)] print([y for x in r for y in x]) # Peter Luschny, Jun 14 2017