This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167217 #22 Jun 25 2022 11:45:58 %S A167217 3,53,827,3671,5507,8423,8693,30293,42083,42281,42299,53639,57203, %T A167217 59921,80819,326681,345473,345887,348191,361637,387449,420803,422243, %U A167217 510299,511019,551339,574181,590813,593171,804653,806363,808991,829601,863729,867131,888011 %N A167217 Primes whose reversal + 1 is a square. %H A167217 Robert Israel and K. D. Bajpai, <a href="/A167217/b167217.txt">Table of n, a(n) for n = 1..10000</a> (first 506 entries from K. D. Bajpai) %e A167217 53 is prime and 35 + 1 = 36 = 6^2. %e A167217 827 is in the sequence because it is prime and reversal(827) + 1 = 728 + 1 = 729 = 27^2. - _K. D. Bajpai_, Jul 03 2014 %p A167217 Nd:= 4: # to get all entries with up to 2*Nd digits %p A167217 revdigs:= proc(x) local F,n,i; %p A167217 F:= convert(x,base,10); %p A167217 n:= nops(F); %p A167217 add(10^(n-i)*F[i],i=1..n); %p A167217 end: %p A167217 Sq:= remove(t -> (t mod 10 = 1), {seq(i^2,i=1..10^Nd-1)}): %p A167217 A:=map(proc(s) local r; r:= revdigs(s-1); if isprime(r) then r else NULL fi end proc, Sq); # _Robert Israel_, Jul 03 2014 %t A167217 Select[Prime[Range[10^5]], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[#]]] + 1]] &] (* _K. D. Bajpai_, Jul 03 2014 *) %K A167217 base,nonn %O A167217 1,1 %A A167217 _Claudio Meller_, Oct 30 2009 %E A167217 More terms from _K. D. Bajpai_, Jul 03 2014