This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167230 #4 Aug 10 2015 00:29:38 %S A167230 1,1,1,1,0,1,2,1,1,1,1,0,0,0,1,2,1,0,0,1,1,2,0,1,0,1,0,1,5,2,2,1,2,1, %T A167230 1,1,1,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,1,1,2,0,1,0,0,0,0,0,1,0,1,5,2, %U A167230 2,1,0,0,0,0,2,1,1,1,2,0,0,0,1,0,0,0,1,0,0,0,1,5,2,0,0,2,1,0,0,2,1,0,0,1,1 %N A167230 The matrix exponential of Sierpiński's triangle (A047999) scaled by exp(-1). %C A167230 Conjecture: All the nonzero entries in this triangle are Bell numbers (A000110). %e A167230 Triangle begins: %e A167230 1 %e A167230 1 1 %e A167230 1 0 1 %e A167230 2 1 1 1 %e A167230 1 0 0 0 1 %e A167230 2 1 0 0 1 1 %e A167230 2 0 1 0 1 0 1 %e A167230 5 2 2 1 2 1 1 1 %e A167230 1 0 0 0 0 0 0 0 1 %e A167230 2 1 0 0 0 0 0 0 1 1 %e A167230 2 0 1 0 0 0 0 0 1 0 1 %e A167230 5 2 2 1 0 0 0 0 2 1 1 1 %e A167230 2 0 0 0 1 0 0 0 1 0 0 0 1 %e A167230 5 2 0 0 2 1 0 0 2 1 0 0 1 1 %o A167230 (PARI) matexp(M) = sum(k=0,99,1./k!*M^k); matexps(M) = matexp(M)/exp(1); %o A167230 matexpsb(M) = bestappr(matexps(M),9999); %o A167230 P = matpascal(13); S = matrix(14,14, n,k, P[n,k]%p); %o A167230 SS = matexpsb(S); %o A167230 for(n=1,14,for(k=1,n,print1(SS[n,k]," "));print("")) %Y A167230 Cf. A000110, A047999. %K A167230 easy,nonn,tabl %O A167230 0,7 %A A167230 _Gerald McGarvey_, Oct 30 2009