cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167231 Append three digits, each increasing by one modulo 10 from the last digit of the nonnegative integers. 0 -> 123, 1 -> 1234 2 -> 2345, ... , 9 -> 9012, 10 -> 10123, etc.

This page as a plain text file.
%I A167231 #22 Apr 12 2023 10:52:08
%S A167231 123,1234,2345,3456,4567,5678,6789,7890,8901,9012,10123,11234,12345,
%T A167231 13456,14567,15678,16789,17890,18901,19012,20123,21234,22345,23456,
%U A167231 24567,25678,26789,27890,28901,29012,30123,31234,32345,33456,34567,35678,36789,37890,38901
%N A167231 Append three digits, each increasing by one modulo 10 from the last digit of the nonnegative integers. 0 -> 123, 1 -> 1234 2 -> 2345, ... , 9 -> 9012, 10 -> 10123, etc.
%H A167231 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,1,-1).
%F A167231 a(n) = 1000n + O(1).
%F A167231 G.f.: (988*x^10 +111*x^9 +1011*x^8 +1101*x^7 +1111*x^6 +1111*x^5 +1111*x^4 +1111*x^3 +1111*x^2 +1111*x +123) / (x^11 -x^10 -x +1). - _Alois P. Heinz_, Jul 05 2022
%p A167231 a:= n-> (d-> parse(cat(n, irem(d+i, 10)$i=1..3)))(irem(n, 10)):
%p A167231 seq(a(n), n=0..40);  # _Alois P. Heinz_, Jul 05 2022
%o A167231 (Python)
%o A167231 def a(n): return int(str(n) + "".join(str((n%10+1+i)%10) for i in range(3)))
%o A167231 print([a(n) for n in range(39)]) # _Michael S. Branicky_, Jul 05 2022
%K A167231 nonn,base,easy
%O A167231 0,1
%A A167231 _Felix Tubiana_, Oct 30 2009
%E A167231 More terms from _Alois P. Heinz_, Jul 05 2022